

a Hewlett Packard Enterprise company

Mobile Device Roaming Behaviors

Shawn Adams Principal Network Engineer

12 February 2018

a Hewlett Packard Enterprise company

Agenda

- What are the factors that affect roaming performance?

- Design recommendations to provide the best roaming experience

- Aruba Customer Engineering (ACE) - Roaming Behavior Test Results

– Aruba Engineering Resolution Team (ERT) – Roaming Behavior Test Results

- Device monitoring and troubleshooting best practices

Lab - Tools and Preparation

- "If it's wireless, how come there are
- so many wires ?"

- We are replacing a low-variable cable
 with -
- air, people, obstacles and variables.
- no cat (Einstein)

What affects roaming performance?

Roaming Defined

- 802.11 STA moves from one BSSID within the ESSID to another BSSID
- Can be measured time between last data frame of BSSID_1 and the 1 data
 frame from BSSID_2
- Authentication adds delay 10-600ms (worst-case full RADIUS exchange)
- DHCP may play a role
- Network Learning L2 and L3 may play a role
- VOIP will suffer if any roam produces frame loss or delay > 150ms
- There is no way to guarantee that at least one frame will be seriously delayed/lost between
- -BSSID_1 and BSSID_2 if using ICMP to measure, the simple test is maximum 1 frame lost

st

Roaming Goals & Objectives

- Provide Best Possible Roaming experience
- Latency One-way Delay <50ms</p>
- Round Trip Delay < 100 ms between STA and STA
- Jitter < 50ms (some documents state < 10ms)</p>
- Packet Loss < 1% (5% can be tolerable in some networks)
- Consecutive lost packets < 3</p>
- Provide clean RF field for STA to roam
- Primary and secondary coverage
- Note: While one ICMP echo request per second sounds good, VOIP frames can come
- every 20-30ms test with more than 1 frame/second

- What is the desired mobile device roaming behavior?
- The STA is solely responsible for the ultimate roaming decision
- No standard clearly identifies or mandates roaming behavior
- Based on all, some, or none of the following:
 - Current AP signal strength
 - Passive Probe listening methods
 - Active Probe Request methods
 - Channel noise, interference, utilization levels, Retries, Data Rates, Bit Error Rate
 - Signal strength of neighboring AP
 - Other unknown conditions decided upon by the client driver

SNR=35, RSSI= -55dBm, Retry Rate <1%, Drop Rate < 1%

SNR=25, RSSI= -60dBm, Retry Rate <5%, Drop Rate < 3%

SNR lower, retries increase, drops increase, Data Rates drop applications begin to suffers degredation At what signal level does the client start probing ?

Probe-threshold and criteria critical - not yet met - passive probing ?

Probe Threshold -65dBm Reached

SNR=25, RSSI= -65dBm, Retry Rate <7%, Drop Rate < 5%

Client sends beast probe-req, subsequent unicast probe-req - all hearing APs answer Several possible problems – too many AP s– not enough delta Sean time ? Beacons missed within this time ? Busy Air - probe responses missed ? Too many probe resp. corrupted probe resp. table too small not all APs probed

Probe-threshold and criteria critical met - bcast probe, then unicast

10

Roam Threshold -75dBm Reached

SNR=20, RSSI= -70dBm, Retry Rate <10%, Drop Rate < 5%

Client Decides on a new BSSID, sends auth. req, subsequent associate req. Several possible problems – too many AP s– not enough delta Scan time ? Beacons missed within this time ? Busy Air - probe responses missed ? Old Data used no roam-threshold reached AP signal delta

What if the client has a roam-threshold of -75dBm ?

SNR=15, RSSI= -75dBm, Retry Rate <15%, Drop Rate < 10%

But what if the client doesn't send probe requests or authentication requests until -75dBm ? Applications are already likely suffering degredation

Client finally roams - too late - application is already suffering degredation

If the client happens to probe again, it obtains a new more accurate table, but what if the STA hits the roam threshold and uses old data?

If the client does probe, if many APs are heard at the same signal level, the STA might choose the AP based on delta - not necessarily the best signal AP

Client picks far away AP versus the proper one since the received signal strengths of the probe response were within -10dB of each other. The down stream connection (green line) is okay but the upstream from the client (red line) is garbage leading to down-rating, retransmissions, errors and having negative impact on other clients on the same AP or same channel.

Obtain signal data "on the ground" from the client's perspective

Device reaches an error threshold and starts looks for another AP to go to by probing and once again may go to a far away AP

Get facts and numbers - don't rely on "green bars"

Roaming Factors

- Probing Threshold - the earlier this happens, the better the roaming results

- Roaming Threshold the earlier this happens, the better the roaming results
- Delta (hysteresis) Received signal difference between better APs
- Scan time Client needs sufficient time to find best APs
- Scan Interval regular passive scans ? on demand ?
- Potential AP table space/sorting
- Hidden SSID
- DFS Channels Must hear before active probing on DFS channel
- Number of Channels takes longer to probe all possible APs

What are the factors that affect device roaming performance?

– Suboptimal AP design and deployment

Enterprise company

What are the factors that affect device roaming performance?

- Incorrect Controller/AP configuration
- AP transmit power is too high
- All 802.11 data rates enabled
- Protocols or features enabled that many devices don't support
- Too Many strong signals client never hits roaming threshold
- Sub-optimal AP mounting
 - vertical stacking in multi-floor building
 - Antenna orientation
 - Poor placement choice obstacles
- Old wireless NIC drivers
- Non-default wireless NIC configuration (i.e. roaming aggressiveness / power-save)
- Non-default OS configuration (i.e. power save mode)

Design Recommendations

Design Recommendations for Good Mobile Roaming Experience

- The following is an example site having proper AP design and placement
- This all wireless enterprise office space (combination of walled offices and cubicles) has AP-325's placed in honeycomb/staggered pattern about 15m apart.
- The expected high peak device association count in this office space was about 75 devices per AP.
- Some offices and conference rooms had an AP directly placed inside.

25%

Design Recommendations for Good Mobile Roaming Experience AP density

How many AP's does it take to cover typical areas without taking user density into account ?

The higher the downtilt AP is mounted (305, 315, 335) the larger the cone of coverage. If mounting a true omni (no downtilt) don't mount too high

Note: These are very raw estimates based on perfect LOS, the presence of no obstacles, and perfect uniform mounting of Aps. Actual site Surveys and customary planning methods must be used for proper and accurate planning and results.

Warehouse (terminal applications and no VoIP)

1 AP every 750 – 1000 sq m (7500 - 10,000 sq ft) with 50% overlap so an AP every 27 – 30 m (85 – 100 ft)

Retail (open floors, eg. Grocery Store)

1 AP every 500 – 750 sq m (5000 - 7500 sq ft) with 50% overlap so an AP every 22 – 25 m (70 - 85 ft)

Open Office Space (open floor/cubes with offices around periphery)

AP every 250 - 360 sq m (2500 - 3600 sq ft) with 50% overlap so an AP every 15 - 20 m (50 - 60 ft)

Closed Office Space

Requires active site survey, depends on construction materials

Design Recommendations for Good Mobile Roaming Experience

Have consistent transmit power across all AP - Primary and secondary coverage

Reduce number of Channels used

Configure the maximum transmit power of all AP 2.4GHz radios to be at least 6 dB less than all 5GHz radios' minimum transmit power.

Consider Spectrum/Monitor Mode if AP density allows in 2.4Ghz band

Confine Mission Critical SSIDS to 5Ghz

Delete the lower 802.11 data rates on all your SSIDs

802.11 beacon rate to match your SSID's lowest configured 802.11 data rate

Design Recommendations for Good Mobile Roaming Experience

- Keep wireless device drivers and OS up-to-date
- Keep Client Match enabled
 - Client Match is not intended to be a fast roaming tool but over time it tries to persuade devices to move to better APs based on signal strength, client capacity, and RF band support (sticky, load balance, band steering trigger)
 - It may be beneficial to reduce the restriction time out so that stubborn devices are allowed to reconnect to the AP of their choice
 - In High Density AP environments it is usually best to increase the load balancing threshold to 50+ on 5GHz radios

Design Tips to Provide the Best Mobile Roaming Experience

- Enable 802.11r if all clients support
- Ensure OKC is enabled and client support
- Ensure PMKID Validate is enabled
- Enable 802.11k if no clients experience problems
- Design for the weakest STA
- primary and secondary coverage (15-30% overlap -70dBm coverage)
- 5Ghz AP power > 6dB higher than 2.4Ghz
- Limit AP power allowed range to 3dB
- 12M or 24M as lowest basic rate
- Confine mission critical SSIDs to 5Ghz (guaranteed client behavior)

Design Tips to Provide the Best Mobile Device Experience

- Take an in-depth look at the following extremely helpful sites to help you pick the best physical AP deployment method, AP density, channel allocation, channel width, Adaptive Radio Management options, and SSID/VAP configuration parameter values:
 - "RF and Roaming Optimization for Aruba 802.11ac Networks" Solutions guide
 - <u>http://community.arubanetworks.com/t5/Validated-Reference-Design/RF-and-Roaming-Optimization-for-Aruba-802-11ac-Networks/ta-p/227716</u>
 - "Very High Density 802.11ac Networks" Validated Reference Design guide.
 - <u>http://community.arubanetworks.com/t5/Validated-Reference-Design/Very-High-Density-802-11ac-Networks-Validated-Reference-Design/ta-p/230891</u>
 - Aruba Solution Exchange for "RF Optimization and Deployment Models"
 - https://ase.arubanetworks.com/solutions/id/75

Roaming Behavior Test Aruba Customer Engineering

The Test Goal and Plan

Compare device roaming experience between 3 different Controller configurations

- Allocate "common" devices with different models and operating systems
- Install a common application on the devices to use during the roaming tests
- Have a dedicated lab with as close as possible minimal fluctuating RF/WiFi environment
- Maintain some constant variables in each of the 3 configuration deployment tests
- Run multiple trials of each test
- Have a script to gather data from Controller/APs and a few clients during each test
- Have all APs in the test send all 802.11 frames they see to a host saving the data in aggregate
- Choose and record criteria for comparing roaming performance

Roaming Lab Information

-WLAN

- Aruba Controller 7210-US
- 9 AP-335s
- ArubaOS 6.5.1.3 build 58402
- SSID configured for 802.1X WPA2-AES EAP-PEAP authentication
- Wired/PoE
 - Aruba MAS S3500
- Authentication
 - Clearpass 6.6.3
 - Windows Server 2012 Active Directory
- IP Address Allocation
 - Windows Server 2012 DHCP server
- Common Application Installed
 - Skype For Business

The AP Deployment Layout Used in Test

- AP placements were limited to the open ceiling cable drops available
- There was not an even distance between the APs due to contractor implementation
 - Our cable/AP contractors arbitrarily placed different model of APs throughout our 5000 sq. meter space
- A planned roaming path was selected between the APs to make use of walls and open space
- The building chosen for the test was newly built and designed for employee collaboration
 - High ceilings with no ceiling tile
 - There are several conference rooms but not employee has their own walled office
 - All employees are in low height cubicles

The Distances Between the AP-335s Under Test

The Roaming Path for Each Test

a Hewlett Packard

Enterprise company

30

Beyond AP75's Area (stopping point) Roaming Path View

Constant Variable in the Roaming Experiment

- The following items did not change during each of the 3 roaming test comparisons

- Kept the same pace of walk (roughly 1 step per second) throughout the building
- Walked the same path from AP8 to past AP75
- Used the same devices and locations on the roaming carts
- The same APs, Controller, SSID, Authentication Server, and DHCP server were used
- Each of the APs were configured with specific 802.11 channels
- The Skype For Business group voice call was always started before each roam

Best Practice Controller Configuration

! rf arm-profile "X4_2.4GHz_arm" max-tx-power 3 min-tx-power 3 cm-report-interval 10 cm-band-g-max-signal 10 mathematical formula 10

```
cm-steer-timeout 3
cm-lb-client-thresh 50
```

1

```
rf arm-profile "X4_5GHz_arm"
no 80MHz-support
max-tx-power 12
min-tx-power 12
cm-report-interval 10
cm-band-g-max-signal 10
cm-steer-timeout 3
cm-lb-client-thresh 50
```

wlan ssid-profile "160MHz_WiFi-ssid_prof" essid "160MHz_WiFi" opmode wpa2-aes a-basic-rates 24 a-tx-rates 24 36 48 54 g-basic-rates 24 g-tx-rates 24 36 48 54 local-probe-req-thresh 10 mcast-rate-opt ht-ssid-profile "160MHz_WiFi-htssid_prof" g-beacon-rate 24 a-beacon-rate 24

```
!
wlan virtual-ap "160MHz_WiFi-vap_prof"
    aaa-profile "160MHz_WiFi-aaa_prof"
    ssid-profile "160MHz_WiFi-ssid_prof"
    vlan 2
    forward-mode decrypt-tunnel
    dynamic-mcast-optimization
    dynamic-mcast-optimization-thresh 100
    broadcast-filter all
1
```

Active AP Table

Name	Group	IP Address	11g Clients	11g Ch/EIRP/MaxEIRP	11a Clients	11a Ch/EIRP/MaxEIRP	АР Туре
AP335_SLR01HPETAC3609p75	Sanya_APs	10.163.180.24	0	AP:HT:6/5.5/23.5	0	AP:VHT:161-/12/22.5	335
AP335_SLR01HPETAC3605p45	Sanya_APs	10.163.180.25	0	AP:HT:11/5.5/23.5	0	AP:VHT:149+/12/22.5	335
AP335_SLR01HPETAC3604p36	Sanya_APs	10.163.180.23	1	AP:HT:1/5.5/23.5	3	AP:VHT:64-/12/22.5	335
AP335_SLR01HPETAC3407p61	Sanya_APs	10.163.180.27	0	AP:HT:1/5.5/23.5	0	AP:VHT:44+/12/22.5	335
AP335_SLR01HPETAC3602p12	Sanya_APs	10.163.180.16	0	AP:HT:1/5.5/23.5	0	AP:VHT:100+/12/22.5	335
AP335_SLR01HPETAC3603p24	Sanya_APs	10.163.180.28	0	AP:HT:11/5.5/23.5	0	AP:VHT:108+/12/22.5	335
AP335_SLR01HPETAC3611p91	Sanya_APs	10.163.180.32	0	AP:HT:6/5.5/23.5	0	AP:VHT:132+/12/22.5	335
AP335_SLR01HPETAC3601p8	Sanya_APs	10.163.180.22	0	AP:HT:11/5.5/23.5	8	AP:VHT:36+/12/22.5	335
AP335_SLR01HPETAC3401p5	Sanya_APs	10.163.180.38	0	AP:HT:6/5.5/23.5	5	AP:VHT:52+/12/22.5	335

BP + 11krv Controller Configuration

- 802.11k, 802.11r, and 802.11v was enabled in addition to best practice configuration

```
wlan ssid-profile "160MHz WiFi-ssid prof"
wlan handover-trigger-profile "handover_enabled"
                                                                  essid "160MHz WiFi"
   handover-trigger
                                                                  opmode wpa2-aes
   handover-threshold 65
                                                                  a-basic-rates 24
                                                                  a-tx-rates 24 36 48 54
wlan rrm-ie-profile "11k"
                                                                  g-basic-rates 24
   no guiet-ie
                                                                  g-tx-rates 24 36 48 54
                                                                  local-probe-reg-thresh 10
wlan dot11r-profile "11r"
                                                                  mcast-rate-opt
   dot11r
                                                                  ht-ssid-profile "160MHz WiFi-htssid prof"
                                                                  g-beacon-rate 24
                                                                  a-beacon-rate 24
                                                                  dot11r-profile "11r"
wlan dot11k-profile "11k"
   dot11k-enable
   bcn-measurement-mode active-all-ch
   bcn-reg-chan-11a 0
                                                               wlan virtual-ap "160MHz WiFi-vap prof"
   bcn-req-chan-11bg 0
                                                                  aaa-profile "160MHz WiFi-aaa prof"
   bcn-reg-time 30
                                                                  dot11k-profile "11k"
   handover-trigger-profile "handover enabled"
                                                                  ssid-profile "160MHz_WiFi-ssid prof"
   rrm-ie-profile "11k"
                                                                  vlan 2
                                                                  forward-mode decrypt-tunnel
                                                                  dynamic-mcast-optimization
                                                                  dynamic-mcast-optimization-thresh 100
                                                                  broadcast-filter all
```

Number of APs Roamed Comparison

Number of APs Roamed Comparison

More is better - presuming the STA always has a close AP

Departing SNR Comparison

Departing SNR Comparison

■ Default ■ VRD ■ VRD 11KRV

Departing SNR is one of the most critical characteristics
Departing SNR Comparison

Takeaways from the Roaming Experiment

- VRD configuration offered slight improvement for most devices
- Mobile devices often did not connect to the closest AP
- Mobile devices often held its association until it was much farther away from its AP (~30m +)
 - -This behavior also showed device's wireless signal strength became very low causing sub-optimal application performance
 - -The 802.11 data rates seemed to deteriorate in parallel to the signal strength dropping in value.
- Mobile devices mostly connected to their APs at a very good SNR
 - Mobile devices mostly departed their associated AP at a good SNR
- Roaming experience improved slightly for clients supporting 802.11K and 802.11V
- Enabling 802.11R improved roaming latency for supporting devices

Why did enabling 802.11K improve roaming for several devices?

- Not all devices support 802.11K
- A Neighbor Report Response is one of the reports the Aruba APs sends to wireless devices when 802.11K is enabled.
- Neighbor Report may contain up to 8 radios/BSSIDs of the AP's neighbors
- Some devices that support 802.11K will use this 802.11K Neighbor Report Response list of BSSIDs as its roaming candidates in preference to what it learned in off channel scanning.

No Time Oscra Destanon Protocol Length CAT Info 1045 000-2014/05/06/04/23/3934 HewlettP cb:9a:30 Samsungt ce:55:a3 802.11 101 Indiablos reports Request Action, 5M-256, FHe0, Flagse 2 347.02 Naruba Nethorks encapsulated remote mirroring 802.11 297 Neighbor Report Response Action, 5M-256, FHe0, Flagse 3 802.11 radio information 101 Ketton, Flags:	w N	an_mgt.rm.action_code == 0 wlan_mgt.rm.a	action_code == 1 wlan_mgt.	rm.action_code == 2 wlan_r	ngt.rm.action_code == 3	wlan_mgt.rm.action_code == 4 wlan_m	gt.rm.action_code == 5
<pre>1440_2017-02-21 05:06:04.22780 SamsungE ec:55:a3 HewlettP cb:9a:30 802.11 110 Heighbor Report Action, SH-950, FH-0, Flags 1540_2017-021 05:06:04.233934 HewlettP cb:9a:30 SamsungE ec:55:a3 802.11 297 Neighbor Report Response Action, SH-256, FH-0, Plags > Aruba Networks encapsulated remote mirroring > 062.11 action information > IftE 802.11 Action, Flags:</pre>	No.	Time	Source	Destination	Protocol	Length CAT	Info
<pre>1546.2017-02-21 05:06:04.233934 HewlettP cb:9a:30 SamsungE ee:S5:a3 802.11 297 Neighbor Report Response Action, SN-256, FH-0, Flags. Aruba Networks encapsulated remote mirroring > 002.11 radio information > 002.11 radio information > 002.11 radio information > 002.01 radio information > 002.0000 > 002.01 radio information > 0000000ef > 000000ef > 000000ef > 000000ef > 000000ef > 000000ef > 0000000ef > 0000000ef > 0000000ef > 0000000ef > 0000000ef > 0000000ef > 0000000ef > 0000000ef > 0000000ef > 00000000ef > 00000000ef > 00000000ef > 00000000ef > 0000000ef > 00000000ef > 0000000ef > 00000000ef > 00000000ef > 00000000ef > 00000000ef > 00000000ef > 00000000ef > 00000000ef > 00000000ef > 00000000ef > 000000000ef > 000000000ef > 00000000ef > 00000000ef > 00000000ef > 00000000ef > 00000000ef > 000000000ef > 000000000ef > 000000000ef > 00000000ef > 00000000ef > 000000000ef > 000000000ef > 000000000ef > 000000000ef > 00000000</pre>	1	549 2017-02-21 05:06:04.227896	SamsungE_ee:55:a3	HewlettP_cb:9a:30	802.11	110 Neighbor Report Req	uest Action, SN=599, FN=0, Flags=.
<pre>> Aruba Networks encapsulated remote mirroring > 002.11 radio information > 1EEE 002.11 wireless LAW monagement frame > Fixed parameters Category code: Radio Measurement (5) Action code: Neighbor Report Response (5) Dialog token: 4 > Tagge dparameters (204 bytes) > Tagg length: 23 BSDD: HewlettP. cb:0:10 (0:801027:cb:0:8c:10) > BSSDD: HewlettP. cb:0:10 (0:801027:cb:0:8c:10) > BSSDD HewlettP. cb:0:10 (0:801027:cb:0:8c:10) > BSSDD HewlettP. cb:0:10 (0:801027:cb:0:8c:10) > BSSDD HewlettP. cb:0:10 (0:801027:cb:0:8c:10) > BSSDD HewlettP. cb:0:10 (0:801027:cb:0:8c:10) > BSSDD: Arubalet 2:8c:10 (0:801027:cb:0:8c:10) > BSSDD: Arubalet 2:8c:10 (0:801027:cb:0:8c:10) > BSSDD: Arubalet 2:8c:10 (0:801027:cb:0:8c:10) > BSSDD: Arubalet 2:8c:10 (0:80100004ef Operating Class: 2 Channel Muber: 12 (lterative measurements on that Channel Number) PFY Type: 8c4 Subelement D: 8x Fransition Candidate Preference (0x03) Length: 8x01 > BSSDD: Arubalet 2:8c:12 (lterative measurements on that Channel Number) PFY Type: 8c4 Subelement D: 8x Fransition Candidate Preference (0x03) Length: 8x01 > Subelement D: 8x Fransition</pre>	1 <	549 2017-02-21 05:06:04.233934	HewlettP cb:9a:30	SamsungE ee:55:a3	802.11	297 Neighbor Report Res	oonse Action, SN=256, FN=0, Flags=.
Tag Number: Neighbor Report (52)	<	<pre>ruba Networks encapsulated remote 02.11 radio information EEE 802.11 Action, Flags: EEE 802.11 wireless LAN managemen Fixed parameters Category code: Radio Measure Action code: Neighbor Report Dialog token: 4 Tagged parameters (204 bytes) Y Tag: Neighbor Report Tag Number: Neighbor Report Tag length: 23 BSSID: HewlettP_cb:8c:10 > BSSID Information: 0x0000 Operating Class: 4 Channel Number: 100 (iter PHY Type: 0x04 Subelement ID: RM Enabled Length: 0x05 Subelement ID: BSS Transi Length: 0x01 Y Tag: Neighbor Report Tag Number: Neighbor Repor Tag length: 23 BSSID: ArubaNet_7e:a4:b0 > BSSID Information: 0x0000 Operating Class: 2 Channel Number: 52 (itera PHY Type: 0x04 Subelement ID: RM Enabled Length: 0x05 Subelement ID: BSS Transi Length: 0x04 Subelement ID: BSS Transi Length: 0x05 Subelement ID: BSS Transi Length: 0x01 Y Tag: Neighbor Report</pre>	<pre>: mirroring mt frame ment (5) Response (5) rt (52) (a8:bd:27:cb:8c:10) 04ef ative measurements on Capabilities (0x46) tion Candidate Prefer rt (52) (18:64:72:7e:a4:b0) 04ef tive measurements on Capabilities (0x46) tion Candidate Prefer</pre>	that Channel Number) ence (0x03) that Channel Number) ence (0x03)			
		Tag Number: Neighbor Reno	rt (52)				

How did 802.11V improve roaming for devices that supported it?

- Client Match feature monitors devices for several minutes after they associate to a BSSID.
- If Client Match determines there is a better AP for the device due to Sticky, Band Steer, or Load Balancing trigger then it will send an 802.11 deauthentication frame to move it unless it supports 802.11V.
- If the device supports 802.11V then Client Match will try to steer the device to the better AP via BSS Transition Management Request frame as shown in the sniffer trace to the right.

📕 wlar	wlan_mgt.fixed.action_code == 7 wlan_mgt.fixed.action_code == 8												
No.	Time	Source	Destination	Protocol	Length CAT	Info							
48	0036 2017-02-21 05:03:42.628068	HewlettP_cb:a5:a0	SamsungE_ee:55:a3	802.11	126	BSS Transition Management Request							
48	480043 2017-02-21 05:03:42.628203 SamsungE_ee:55:a3 HewlettP_cb:a5:a0 802.11 105 BSS Transition Management Respon												
48	0044 2017-02-21 05:03:42.628204	SamsungE ee:55:a3	HewlettP cb:a5:a0	802.11	105	BSS Transition Management Response							
> Aru	Aruba Networks encapsulated remote mirroring												
> 802	802.11 radio information												
> IEE	> IEEE 802.11 Action, Flags:C												
✓ IEE	✓ IEEE 802.11 wireless LAN management frame												
~	Fixed parameters												
	Category code: WNM (10)												
	Action code: BSS Transition	Management Request (7)											
	Dialog token: 0x5e												
	1 = Preferred Candid	late List Included: 1											
	0. = Abridged: 0												
	0 = Disassociation I	imminent: 0											
	0 = BSS Termination	Included: 0											
	0 = ESS Disassociati	on Imminent: 0											
	Disassociation Timer: 25600												
	Validity Interval: 200												
	BSS Transition Candidate Lis	t Entries: 3417a8bd27d	ba5b0e70400000024004	60573c001	00010301								
0000													

0000	00	50	56	9d	28	42	00	1a	1e	10	b4	00	0 8	00	45	00	.PV.(BE.
0010	00	6c	44	32	00	00	3c	11	07	97	0a	a3	b4	18	0a	a2	.1D2<.
0020	69	5b	15	b3	15	b3	00	58	00	00	58	ac	3a	a8	00	05	i[XX.:
0030	b0	69	00	00	00	40	00	00	00	40	00	f0	Øb	34	d0	00	.i@@4
0040	2c	00	f4	0e	22	ee	55	a3	a8	bd	27	cb	a5	a0	a8	bd	,".U'
0050	27	cb	a5	a0	30	00	0a	07	5e	01	00	64	с8	34	17	a8	'0 ^d.4
0060	bd	27	cb	a5	b0	e7	04	00	00	00	24	00	46	05	73	c0	.'\$.F.s.
0070	01	00	01	03	01	01	69	15	f2	fe	00	00	00	00			i

How did 802.11V improve roaming for devices that supported it?

wlan_mgt.fixed.action_code == 7 || wlan_mgt.fixed.action_code == 8 Most devices that truly Time Destination Protocol Length CAT Info No. Source support 802.11V BSS 480036 2017-02-21 05:03:42.628068 HewlettP cb:a5:a0 SamsungE ee:55:a3 802.11 126 BSS Transition Management Request 480043 2017-02-21 05:03:42.628203 SamsungE ee:55:a3 HewlettP cb:a5:a0 802.11 BSS Transition Management Response 105 Transition Management 480044 2017-02-21 05:03:42.628204 SamsungE ee:55:a3 HewlettP cb:a5:a0 105 BSS Transition Management Response 802.11 will accept the request if Aruba Networks encapsulated remote mirroring 802.11 radio information it approves the > IEEE 802.11 Action, Flags:C ✓ IEEE 802.11 wireless LAN management frame suggested BSSID in the ✓ Fixed parameters Category code: WNM (10) candidate list. Action code: BSS Transition Management Response (8) The sniffer trace and CLI Dialog token: 0x5e BSS Transition Status Code: 0 output of Client Match BSS Termination Delay: 0 BSS Transition Target BSS: HewlettP cb:a5:b0 (a8:bd:27:cb:a5:b0) history to the right shows 802 11V was used 0000 00 50 56 9d 28 42 00 1a 1e 10 b4 00 08 00 45 00 .PV.(B..E. 0010 00 57 65 eb 00 00 3c 11 e5 f4 0a a3 b4 16 0a a2 .We....<. successfully to 0020 69 5b 15 b3 15 b3 00 43 00 00 58 ac 3a a8 00 05 i[....c ..x.:... 0030 b2 c8 00 00 00 2b 00 00 00 2b 00 f0 0b 49 d0 00+....I... bandsteer an Android 2c 00 a8 bd 27 cb a5 a0 f4 0e 22 ee 55 a3 a8 bd'... ..".U... 0040 27 cb a5 a0 60 1b 0a 08 5e 00 00 a8 bd 27 cb a5 0050 '...`... ^....'.. device. ///// Command: show ap arm client-match history client-mac ::55:a3 advanced ///// Section: Stdout Tue Feb 21 06:04:44.922 2017 S: Source, T: Target, A: Actual BTM-ACC: 11v BTM Accept, BTM-REJ#: 11v-BTM Reject with reason #, BTM-TO: 11v-BTM Timeout, BTM-FA: 11v-BTM False Accept Unit of Roam Time: second Unit of Eff Signal, Signal, EIRP: dBm ARM Client match History Time of Change Station Reason Status/Roam Time/Mode Eff_Signal(S/T/A) Signal(S/T/A) EIRP(S/T/A) Band(S/T/A) Radio Bssid(S/T/A 2017-02-21 06:03:37 :55:a3 Band-steer Success/1/BTM-ACC -49/-52/-52 -49/-52/-52 5.5/12/12 2.4G/5G/5G a8:bd:27:cb:a5:a0/a8:bd:27:cb:a5:b0/a8:bd:27:cb:a5:b0 2017-02-21 05:48:39 :55:a3 Band-steer No-Move/4/BTM-REJ7 -54/-69/-54 -54/-69/-54 5.5/12/5.5 2.4G/5G/2.4G a8:bd:27:cb:bc:a0/a8:bd:27:cb:bc:b0/a8:bd:27:cb:bc:a0

How did 802.11R improve roaming for devices that supported it?

- In analyzing sniffer traces of a roaming device (Win 10 / Intel 8265) that supports 802.11r the following authentication times were noted.
- It took 209 ms when timing 802.11 Auth to first data packet after a full 802.1X/EAP-PEAP authentication with 802.11R disabled.
- It took 40 ms when timing 802.11 Auth to first data packet after Opportunistic Key Caching (OKC) with 802.11R disabled.
- It took 17 ms when timing 802.11 Auth to first data packet with 802.11R enabled as shown to the right.

		Time			Source	Destination	Protocol	Length	CAT	Info			
15	68105	2017-02-2	05:06:0	6.654347	IntelCor_00:59:ce	HewlettP_cb:8c:10	802.11	237		Authenti			
15	68130	2017-02-2	05:06:0	6.655948	HewlettP_cb:8c:10	IntelCor_00:59:ce	802.11	249		Authenti			
15	68138	2017-02-2	L 05:06:0	6.656890	IntelCor_00:59:ce	HewlettP_cb:8c:10	802.11	340		Reassoci			
15	68166	2017-02-2	1 05:06:06.659338 HewlettP_cb:8c:10 IntelCor_00:59:ce 802.11 377										
15	68172	2017-02-2	1 05:06:06.659482 HewlettP_cb:8c:10 IntelCor_00:59:ce 802.11 12										
15	68204	2017-02-2	L 05:06:0	6.662843	IntelCor_00:59:ce	ArubaNet_1b:c9:40	LLC	319		I, N(R)=			
15	68258	2017-02-23	L 05:06:0	6.671196	IntelCor_00:59:ce	Broadcast	LLC	457		I, N(R)=			
15	68275	2017-02-				-				Action,			
15	68279	2017-02-	> IEEE 80	2.11 Authen	tication, Flags:	C				Action,			
15	68291	2017-02-	V IEEE 80	2.11 wirele	ss LAN management fra	me				I, N(R)=			
			V Fixe	d parameter	s (6 Dytes)	Transition (2)							
			A	uthenticati	on Algorithm: Fast BS:	S Transition (2)							
			AI C		Successful (0x0001								
			C Taga	ed paramete	ns (137 hytes)								
				eu paramete ag: DSN Info	ormation								
			* 1	Tag Number	c: RSN Information (4)	3)							
				Tag lengt	h: 38	,,							
				RSN Versi	n: 1								
			>	Group Cip	her Suite: 00-0f-ac ()	[eee8021] AES (CCM)							
				Pairwise (Cipher Suite Count: 1								
			>	Pairwise (Cipher Suite List 00-0	0f-ac (Ieee8021) AES (CCM)						
				Auth Key I	Management (AKM) Suite	e Count: 1	· ·						
			>	Auth Key I	Management (AKM) List	00-0f-ac (Ieee8021) F	T over IE	EE 802.3	1X				
			· · · · · · · · · · · · · · · · · · ·	RSN Capab:	ilities: 0x003c								
				PMKID Cour	nt: 1								
			>	PMKID List	t								
			✓ T	ag: Mobilit	y Domain								
				Tag Number	r: Mobility Domain (54	1)							
				Tag lengt	h: 3								
				Mobility N	Domain Identifier: 0x0	3001 ·							
				FT Capabi	lity and Policy: 0x00								
				0	= Fast BSS Transition	n over DS: 0x0							
				0.	= Resource Request Pr	rotocol Capability: 0x	0						
			<u>м</u> Та	ag: Fast BS	S Transition								
				Tag Number	r: Fast BSS Transition	1 (55)							
	Tag length: 90												
				MIC Contro	ol: 0x0000								
				0000 0000	= Element (Count: 0							
				MIC: 0000	000000000000000000000000000000000000000	000000							
				ANonce: 00	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000						
				SNonce: 8	1/8450ac2+3a23a66fb314	+1acbbd945e4da69e506cb	d10d						
				Subelement	τ ID: PMK-K0 Key hold	er identifier (RØKH-ID	(5)						
				Length: 6	· baldes daration //								
				РМК-К0 Ке	y noider identitier ()	(0KH-1D):							

Authentication, SN=45, FN=0, Flags=......C [ETH Authentication, SN=256, FN=0, Flags=....., SSII Reassociation Request, SN=46, FN=0, Flags=..... Reassociation Response, SN=257, FN=0, Flags=.... Action, SN=2602, FN=0, Flags=..... [ETHERNET FI I, N(R)=16, N(S)=0; DSAP NULL LSAP Group, SSAP NUI I, N(R)=16, N(S)=0; DSAP LLC Sub-Layer Management Action, SN=2603, FN=0, Flags=...... SSID=Broad Action, SN=47, FN=0, Flags=......C [ETHERNET FR, I, N(R)=16, N(S)=0; DSAP LLC Sub-Layer Management

Roaming Behavior Test Engineering Resolution Team

The Test Goal and Plan

Create a small-scale simulation of real-life roaming environments

- Focus on practical question roaming is "fair", but not acceptable.
- Allocate 3 android devices good performance, poor performance, and industrial.
- Install a common application on the devices to use during the roaming tests.
- AP mounting and space based on real-life requirements.
- Based on Aruba VRD configuration.
- Eliminate as many variables as possible.
- Run multiple trials of each test.
- Apply Customer success criteria.

Written Acceptance Tests are Essential !

Roaming Lab Information

-WLAN

- Aruba Controller 7010-RW
- 3 AP-215
- ArubaOS 6.4.4.12
- SSID configured for 802.1X TLS authentication
- Authentication
 - Clearpass 6.5
- IP Address Allocation
 - Linux ISC DHCP 4.2.6
- Common Application Installed
 - Asterisk SIP
 - Aruba Utilities

The AP Deployment Layout Used in Test

- AP placements were limited to the open ceiling cable drops available
- There was not uniform distance between the APs due to contractor implementation
 - AP placement was limited to the offices on the basis of customer aesthetic requirements
- A planned roaming path was selected between the APs to make use of walls and open space
- The building chosen for the test was newly built designed with a groovy collaborative working space
 - Standard 2.5m ceilings
 - -3 offices, connecting to a larger meeting area

The Testing

The 3 devices chosen were categorized based on observed roaming performance

- Device #1 Older Android device 5.0.1, which exhibited consistently poor behavior in multiple environments
- Device #2 Modern Android device, 6.0.1 which exhibited consistently better roaming, but not acceptable
- Device #3 Industrial Android device, 5.0.1 which exhibited consistently better roaming, but not acceptable

Roaming was always along the same path, AP_1, AP_2, AP_3, and the reverse.

Controller UCC data, Android Utilities, and scripts were used to measure

Interference, noise and AP channel stability were monitored during the testing to ensure no variance

DHCP traffic was monitored at the DHCP server

An SIP call to the conference service was placed prior to the start of roaming – music audio stream toward the client

Use VOIP and ICMP - 5-8 frames per second as a baseline test

Comparing 3 Android Clients

Key data points are the scroll view – departure signal and the scanned SSIDs

Observations

Jan 22, 2017 7:03:07 PM WIFI_EVENT RSSI_CHANGED_-68

Jan 22, 2017 7:03:11 PM New Wi-Fi Reading Connected_true RSSI_-75 dBm Link_45 Mbps AP name______ BSSID_AC:A3:1E:DB:14:70 SSID_campus-tls IPaddr_10.10.82.161 GwyIPAddr_10.10.82.1 Upstream Iperf 0.0Mbps Dnstream Iperf 0.0Mbps Scanned by SSID_campus-tls_ AC:A3:1E:DB:14:70 36 40 MHz cf 5220 MHz -49 dBm AC:A3:1E:DB:14:70 36 40 MHz cf 5200 MHz -75 dBm Scanned by SSID_campus-tls_

Jan 22, 2017 7:03:11 PM Scan Results Filtered_true filterSsid_campus-tls a band 212 b band 63

Jan 22, 2017 7:03:11 PM WIFI_EVENT SCAN_RESULTS_true

Jan 22, 2017 7:03:13 PM WIFI_EVENT supplicant.STATE_CHANGE_ASSOCIATED

Jan 22, 2017 7:03:13 PM WIFI_EVENT STATE_CHANGE_[type: WIFI[], state: CONNECTED/CONNECTED, reason: (unspecified), extra: "campus-tls", roaming: false, failover: false, isAvailable: true]

Jan 22, 2017 7:03:13 PM WIFI_EVENT STATE_CHANGE_SSID: campus-tls, BSSID: ac:a3:1e:15:77:30, MAC: 02:00:00:00:00:00:00, Supplicant state: ASSOCIATED, RSSI: -75, Link speed: 45Mbps, Frequency: 5180MHz, Net ID: 1, Metered hint: false, score: 55

Jan 22, 2017 7:03:13 PM wlan0,0.0.0.0/0 -> 10.10.8	n0,10.10.82.0/24 -> 0.0.0.0 3,1048576}									
Jan 22, 2017 7:03:13 PM	WIFI_EVENT STATE_CHANGE_ac	a3:1e:15:77:30								
Jan 22, 2017 7:03:14 PM	n 22, 2017 7:03:14 PM WIFI_EVENT supplicant.STATE_CHANGE_FOUR_WAY_HANDSHAKE									
Jan 22, 2017 7:03:14 PM	WIFI_EVENT supplicant.STATE_C									
Jan 22, 2017 7:03:14 PM	WIFI_EVENT supplicant.STATE_C	Noted that when the departing signal was < -74 , te	ests failed							

Jan 22, 2017 7:03:16 PM WIFI_EVENT RSSI_CHANGED_-47

Feb 14, 2018 08:49:25 New Wi-Fi Reading Connected_true RSSI_-66 dBm Link_135 Mbps AP name______ BSSID_AC:A3:1E:DB:14:70 SSID_campus-tls IPaddr_10.10.82.178 GwyIPAddr_10.10.82.1 Upstream Iperf 0.0Mbps Dnstream Iperf 0.0Mbps

Feb 14, 2018 08:49:26 WIFI_EVENT RSSI_CHANGED_-63

Feb 14, 2018 08:49:29 WIFI_EVENT RSSI_CHANGED_-63 <-----Actual received Signal

Feb 14, 2018 08:49:31 New Wi-Fi Reading Connected_true RSSI_-63 dBm Link_150 Mbps AP name______ BSSID_AC:A3:1E:DB:14:70 SSID_campus-tls IPaddr_10.10.82.178 GwyIPAddr_10.10.82.1 Upstream Iperf 0.0Mbps Dnstream Iperf 0.0Mbps Scanned by SSID_campus-tls______ chan 44 40 MHz wide, cf 5230 MHz -50 dBm chan 36 40 MHz wide, cf 5190 MHz -63 dBm Scanned by SSID_campus-tls_____

Feb 14, 2018 08:49:31Scan ResultsFiltered_true filterSsid_campus-tls a band 237 b band 63Feb 14, 2018 08:49:31WIFI_EVENT SCAN_RESULTS_trueFeb 14, 2018 08:49:32WIFI_EVENT RSSI_CHANGED_-64Feb 14, 2018 08:49:33WIFI_EVENT supplicant.STATE_CHANGE_ASSOCIATINGFeb 14, 2018 08:49:33WIFI_EVENT supplicant.STATE_CHANGE_ASSOCIATEDFeb 14, 2018 08:49:33WIFI_EVENT RSSI_CHANGED_-49

Feb 14, 2018 08:49:33 WIFI_EVENT STATE_CHANGE_[type: WIFI[], state: CONNECTED/CONNECTED, reason: (unspecified), extra: "campus-tls", failover: false, available: true, roaming: false, metered: false]

Feb 14, 2018 08:49:33 WIFI_EVENT STATE_CHANGE_SSID: campus-tls, BSSID: ac:a3:1e:db:13:70, MAC: 02:00:00:00:00:00:00:00;00:00, Supplicant state: **ASSOCIATED, RSSI: -49**, Link speed: 150Mbps, Frequency: 5220MHz, Net ID: 6, Metered hint: false, **score: 60**

Feb 14, 2018 08:49:33 WIFI_EVENT STATE_CHANGE_{InterfaceName: wlan0 LinkAddresses: [fe80::8a79:7eff:fe5f:4a21/64,10.10.82.178/24,] Routes: [fe80::/64 -> :: wlan0,10.10.82.0/24 -> 0.0.0.0 wlan0,0.0.0/0 - > 10.10.82.1 wlan0,] DnsAddresses: [192.168.17.52,192.168.17.31,] Domains: lab.no-ip.org MTU: 0 TcpBufferSizes: 131072,262144,3145728,4096,221184,3145728}

Feb 14, 2018 08:49:33 WIFI_EVENT STATE_CHANGE_ac:a3:1e:db:13:70

Feb 14, 2018 08:49:34 WIFI_EVENT supplicant.STATE_CHANGE_FOUR_WAY_HANDSHAKE

Feb 14, 2018 08:49:34 WIFI_EVENT supplicant.STATE_CHANGE_GROUP_HANDSHAKE

Feb 14, 2018 08:49:34 WIFI_EVENT supplicant.STATE_CHANGE_COMPLETED

Feb 14, 2018 08:49:35 WIFI_EVENT RSSI_CHANGED_-50

a Hewlett Packard Enterprise company

Detailed View of Wireless Device's 802.11 Connection Status-CLI

(MC-LOCAL-1) #show ap debug client-table ap-name f0:5c:19:c0:bf:ba

Client Table

MAC Tx_Timesta	ESSID mp	BSSID Rx_Time	Ass estamp	soc_State H ⁻ MFP St	Γ_State A atus (C,R)	ID PS_State Idle time Clie	UAPSD nt health (C	Tx_Pkts C/R)	Rx_Pkts	PS_C	len Tx_	_Retries	Tx_Rat	e Rx_	Rate Last	_ACK_SNR	Last_Rx_SNR TX_Chains	
 a4:84:31:fb: 11:14:36 20	e3:66 k-tel 17 (0,0)	 e f0:5c:1 1	9:8b:fb:b1 86/85	Associated	WQSs	0x1 Power-sa	ave (0,0,0,0	D,N/A,0) 215	2 14478	0	290	72	72	33	34	3[0x7]	Wed Mar 1 11:14:35 2017 W	/ed Mar 1
Client Table																		
MAC Tx_Timesta	ESSID mp	BSSID Rx_Time	Ass estamp	soc_State H ⁻ MFP St	Γ_State_A atus (C,R)	ID PS_State Idle time Clie	UAPSD nt health (C	Tx_Pkts C/R)	Rx_Pkts	PS_C	len Tx_	Retries	Tx_Rat	e Rx_	Rate Last	_ACK_SNR	Last_Rx_SNR TX_Chains	
 a4:84:31:fb: 11:14:36 20	e3:66 k-tel 17 (0,0)	e f0:5c:1 1	9:8b:fb:b1 86/85	Associated	WQSs	0x1 Power-sa	ave (0,0,0,0	D,N/A,0) 215	2 14478	0	290	72	72	33	34	3[0x7]	Wed Mar 1 11:14:35 2017 W	/ed Mar 1
a4:84:31:fb: 11:14:37 20	e3:66 k-tel 17 (0,0)	e f0:5c:1 0	9:8b:fb:b1 86/85	Associated	WQSs	0x1 Awake	(0,0,0,0,N/	/A,0) 2154	14490 0	:	290	72	13 1	9	22	3[0x7] V	Ved Mar 1 11:14:37 2017 Wed	Mar 1
a4:84:31:fb: 11:14:39 20	e3:66 k-tel 17 (0,0)	e f0:5c:1 1	9:8b:fb:b1 86/85	Associated	WQSs	0x1 Power-sa	ave (0,0,0,0),N/A,0) 215	5 14498	0	290	72	72	17	19	3[0x7]	Wed Mar 1 11:14:38 2017 W	/ed Mar 1
a4:84:31:fb: 11:14:40 20	e3:66 k-tel 17 (0,0)	e f0:5c:1 0	9:8b:fb:b1 86/85	Associated	WQSs	0x1 Power-sa	ave (0,0,0,0	0,N/A,0) 215	6 14513	0	291	72	6	7	6	3[0x7]	Wed Mar 1 11:14:40 2017 We	d Mar 1

If there is one command you should memorize - this is it

Detailed View of Wireless Device's 802.11 Connection Status-CLI

(Aruba7210_Sanya) #show ap debug client-table ap-name AP335_SLR01HPETAC3602p12

MAC ESSID BSSID Assoc State HT State AID PS State UAPSD Tx_Pkts Rx_Pkts PS_Qlen Tx_Retries Tx_Rate Rx_Rate Last_ACK_SNR Last_Rx_SNR TX_Chains - - ---------160MHz WiFi 243 66:08:97:89:23:88 a8:bd:27:cb:8c:10 Associated Power-save 255366 136368 37 38 4[0xf] AWvSsE (0,0,0,0,N/A,0) Num of associated clients: 1 UAPSD:(VO,VI,BK,BE,Max SP,Q Len) HT Flags: A - LDPC Coding; W - 40MHz; S - Short GI 40; s - Short GI 20 D - Delayed BA; G - Greenfield; R - Dynamic SM PS Q - Static SM PS; N - A-MPDU disabled; B - TX STBC b - RX STBC; M - Max A-MSDU; I - HT40 Intolerant; t turbo-rates (256-QAM) VHT Flags: C - 160MHz/80+80MHz; c - 80MHz; V - Short GI 160; v - Short GI 80 E - Beamformee; e - Beamformer HT_State shows client's original capabilities (not operational capabilities)

This is an excellent command to analyze the client's health on its currently associated AP.

In a properly designed RF environment with best practice configuration:

- 1. Most wireless devices should be associated at least at a Rx SNR of 30 or better
- Most wireless devices should have less than 20% 802.11 retries (Tx_Retries/Tx_Pkts).

a Hewlett Packard Enterprise company

Client Table

Ensure Client-match, Interference, Channel Changes do not impact during roaming

Observations

This is a sample of one of the better tests for Device #2.

The correlation is low departure SNR, poor performance:

Retries drops VOIP interruptions Application interruptions Complete 802.11 disconnect

Results

Conclusions

Within the given configuration

Older Android 5.0.1 failed 4 out of 5 tests in at least one datapoint

- This most closely simulated field problems

Modern Android 6.0.1

- Default roam threshold failed 1 out of 5 tests in at least one datapoint
- Roam threshold at -65dBm, passed all 5 tests (wl roam_trigger -65)
- Mirrors similar results achieved with one Smartphone manufacturer when roam threshold set to -65dBm

Industrial Android

- Default parameters failed 1 out of 5 tests in at least one datapoint
- With configurable roam threshold at -65dBm, passed all 5 tests

Results – Heatmap 3APs

Results – Heat Map 2 APs

Takeaways from the Testing

- Roaming experience reasonably good with Aruba VRD configuration
 - Mobile devices often did not connect to the closest AP
 - Mobile devices often held its association until it was much farther away from its AP
 - This behavior also showed device's wireless signal strength became very low causing suboptimal application performance
 - The 802.11 data rates seemed to deteriorate in parallel to the signal strength dropping in value.
- Roaming experience Improved when devices used roaming threshold of -65dBm (scan -60dBm)
 - Mobile devices mostly connected to their APs at a very good SNR
 - Mobile devices mostly departed their associated AP at a good SNR
 - Application testing showed significant improvement for all devices using -65dBm roam threshold
 - Although a small difference this is the difference between "pretty good" and "it works"
- Roaming experience seemed to improve when enabling 802.11K in addition to best practice configuration
- Enabling 802.11R improved roaming latency for supporting devices

Device Monitoring and Troubleshooting Best Practices

Detailed View of Wireless Device's 802.11 Connection Status-UI

a Hewlett Packard Enterprise company

Airwave, Dashboard may provide historical data

Don't forget the fundamental troubleshooting steps

- Collect detailed information about a reported issue
- Begin with categorizing STA stationary behavior
- Is it isolated to an individual or group of users?
- Certain STA types ?
- Is it isolated to a geographical area?
- certain building or certain area of the floor ?
- Is the problem reproducible ?
- Is it isolated to an application or SSID?
- Is it isolated to a time of day?
- Did any change in the network, configuration, or on the devices?

Isolate between application and network problems

Gather helpful data before reporting to Aruba/HPE Support

– Minimal data that should be gathered to help report a problem for quick resolution

- Answers to the previous slides questions
- Controller tech-support (tar logs tech-support)
- AP tech-support (Example AP before/After diffs are helpful)
- user tech-support (basic client info)
- Augmenting or focused data
 - Controller syslogs
 - Airwave RF and Client health report for the specified problem report
 - AP remote packet capture if it is a reproducible connectivity problem

Gather helpful data before reporting to Aruba/HPE Support

- Always examine the connection from the perspective of the client and the AP/controller
- Begin categorization with the client in a stationary position
- Controlled roaming tests examining both sides of the connection

Controller Side Data

Show user-table verbose

Show ap association client-mac <client mac>

Show ap debug client-table ap-name <apname> | inc <client mac>

Show ap debug client-stats <client mac>

Show auth

Show ap client trail <client mac>

Show ap virtual-beacon-report client-mac <client mac>

show ap remote debug mgmt

IAP Data – not all data available at the VC – SSH to the IAP where the client is connected Show client debug Show ap association Show ap debug client-table Show ap client trail Show ap debug auth show ap remote debug mgmt

RF problem ? auth problem ? Network problem (DHCP?) or a true roaming problem 63

Great Android Tool – Aruba Utilities

Aruba Utilities is a great app that can be downloaded from the Android "Play Store". It has many functions like Wi-Fi Monitor, SSH to Controller CLI, Airwave VisualRF display/survey, Airwave AMC client, iBeacons, iPerf, Ping, DNS, mDNS, and ALE diagnostics.

Most engineers use the Wi-Fi Monitor quite often when verifying coverage and roaming behavior.

Great Android Tool – Aruba Utilities

After doing a roaming test on an Android device you can view the Aruba Utilities "Handover Scroll View File" (in "Email-Logs" attachments) to see at what signal strength the device chose to roam to a closer BSSID.

Summary

- What are the factors that affect roaming performance?
 - AP mounting, antenna orientation, spacing, stacking
 - Power, TX , Beacon Rates, Client drivers
- Design Recommendations for good mobile roaming experience
 - Proper mounting, proper utilization f 5Ghz band
 - Adjust Power levels, TX , and beacon rates
- Aruba ACE/ERT Roaming Behavior Test Results
 - Improvements using VRD Configuration
- Device monitoring and troubleshooting best practices
 - Client-side data, Android Utilities
 - AirRecorder, CLI Data

Reference Material

- Aruba OKC Implementation
- https://arubapedia.arubanetworks.com/arubapedia/images/1/1b/Aruba_OKC_implementation.pdf
- Aruba OS CLI Reference Guide
- https://support.arubanetworks.com/Documentation/tabid/77/DMXModule/512/Command/Core_Download/Default.aspx?EntryId=25952
- Aruba VRD "Optimizing Aruba WLANs for Roaming Devices" Document version v3.3
- http://www.arubanetworks.com/assets/vrd/DG_Roaming.pdf
- Aruba VRD "RF and Roaming Optimization for Aruba 802.11ac Networks"
- https://community.arubanetworks.com/t5/Validated-Reference-Design/RF-and-Roaming-Optimization-for-Aruba-802-11ac-Networks/tap/227716
- Aruba TAC Case Opening Guideline
- https://support.arubanetworks.com/Portals/0/uploads/614/Aruba_Networks_TAC_Case_Guideline.pdf

Works In Progress To be continued...

Works in Progress

There are a number of efforts underway to establish standards to allow improved client roaming. Much focus is in the area of Carrier offload – 3G/4G to and from Wi-Fi.

If and when some or any of these standards are ratified, they may or may not find adoption in released product.

Until then – we need to continue to provide a good RF neighborhood for clients to make their Roaming decisions.

Wi-Fi Alliance Mobile Multimedia

Originally intended (sort-of) as an enterprise-voice successor Now aims to provide a performance test for inter-AP roaming

Dynamic test of changing AP signals to trigger a roaming event

-Expected certification March 2018 ???

Works in Progress

Wi-Fi Alliance MBO (Multiband Operations)

Aims to improve performance by assisting clients to move to the best band, channel and AP

Client tells AP about its preferences – capabilities Channels it likes (or not) APs it likes (or not) Bands it likes (or not)

AP tells client about its capabilities and neighbours Bands Channels

AP can steer client to desired band or AP or to another (cellular) network BSS transition management frame

Expected certification 2017 ???

Works in Progress

Wi-Fi Alliance OCE (Optimized Connectivity Experience)

Aims to improve performance in dense networks with fast-moving clients

FILS (Fast Initial Link Setup) from 802.11ai Multi-function frames for discovery and association with security Advertised frequently (20 msec) by APs Allows cross-subnet roaming

Reduce probe requests, responses Increase minimum rates (5.5 MHz @ 2.4 GHz) Probing becomes unnecessary, as FILS advertisements are broadcast Reduced (compact) neighbour reports

Expected certification May 2018 ??? Recent developments in Linux Arena

http://www.wi-fi.org/who-we-are/current-work-areas

aruba

a Hewlett Packard Enterprise company Thank You !

