
Securing Wireless Communications A Layered Approach

Jeremy Bennett Security Architect jbennett@arubanetworks.com

Agenda

Layer 0 – Why Security Matters

A Word About PCI DSS

Who is PCI

- A worldwide consortium
- Started by major card brands
- Includes card issuers and banks
- Includes merchants
- Includes technology providers

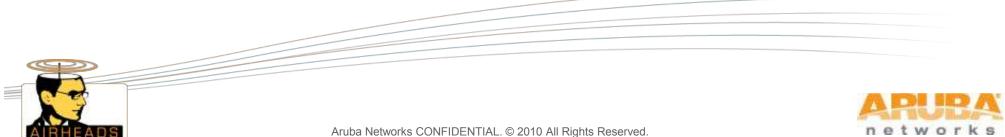
What is PCI

- A digital security standard
- Covers all aspects of IT from systems to storage to networks
- Designed to protect debit and credit card data
- Mandatory for all merchants worldwide

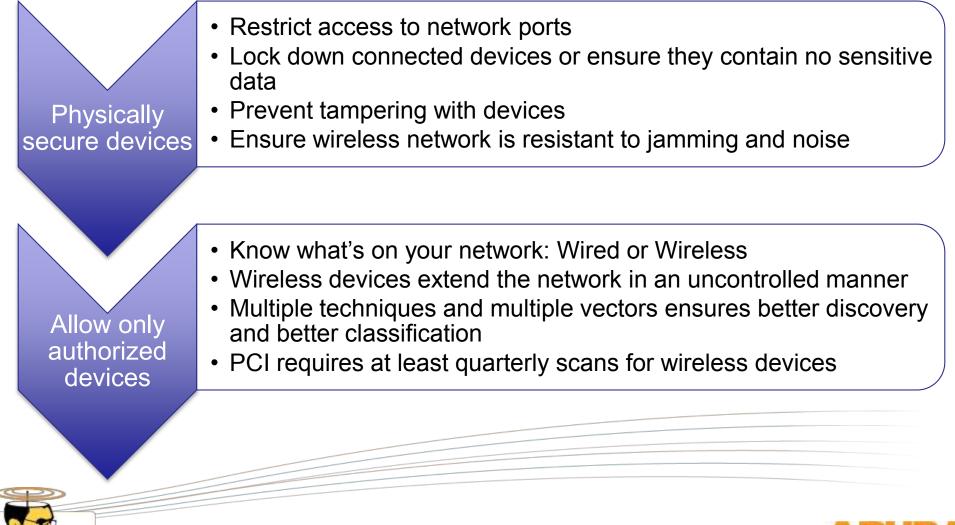
Why Comply?

- Protect the brand
- Avoid \$160/card breach penalty under safe harbor
- Prevent \$10,000 -\$100,000 a month out-of-compliance fine
- Lower per transaction rates, only available with PCI compliance

PCI DSS Wireless Guidelines


Authored by the Wireless Special Interest Group

- A group of PCI members interested in wireless
- Many wireless experts
- NOT a new set of requirements
- Provides concrete guidance on how PCI DSS requirements impact wireless networks
 - Whether you have wireless or not
 - Whether you use wireless for cardholder data or not
- Reviewed and approved by the PCI council



Layer 1 – Environment

- Physical and RF space
- Threats
 - Man in the Middle device inserted between AP and port
 - Rogue device inserted into unused port
 - Jamming & Interference
 - Tampering with or stealing APs
- Regulation
 - PCI DSS 11.1 Wireless scanning
 - PCI DSS 9.1, 9.2 Secure ports and APs

Layer 1 - Secure the Environment

Layer 1 – Using Aruba

Physically Secure Devices

- Centralized architecture means no sensitive data is exposed if an AP is lost
- Integrated TPMs mean APs cannot be spoofed our swapped out with altered devices
- Wired & wireless authentication
- Centralized management means alerts can be generated if an AP is lost or disconnected
- Spectrum monitoring and Adaptive Radio Management (ARM) ensure consistent operation

Allow Only Authorized Devices

- Aruba AirMonitors scan the RF space and correlate wireless and wired traffic to accurately categorize rogues
- AirWave RAPIDS proactively scans the wired network through switches, routers, and direct probes to find all suspicious devices.
- Multiple techniques and multiple vectors ensures better discovery and better classification
- Wired & wireless containment reduces the threat of rogues

Layer 2 – Data

Not just bytes but also the ability to trust them

Threats

- Eavesdropping
- Data forging
- Floods & DoS
- ✤ 802.11 protocol attacks
- Regulation
 - PCI DSS 7.1, 7.1.2 Access on need to know
 - PCI DSS 7.2, 8.1 Individual user accounts
 - PCI DSS 4.1, 4.1.1 Use strong encryption

Layer 2 - Protect the Data

Secure the protocol

- Avoid floods and DoS attacks
- Use wireless IDS to monitor all network traffic

Authenticate

- Know your wireless clients
- Prevent bogus clients from getting online
- Devices should be unusable for business without a valid user
- Use 802.1x where possible

- WPA2 WLANs are securely authenticated and encrypted.
- Open wireless + VPN
 = Window of client
 exposure
- Make sure the link between the AP and controller is secure

Layer 2 – Aruba Secures 802.11

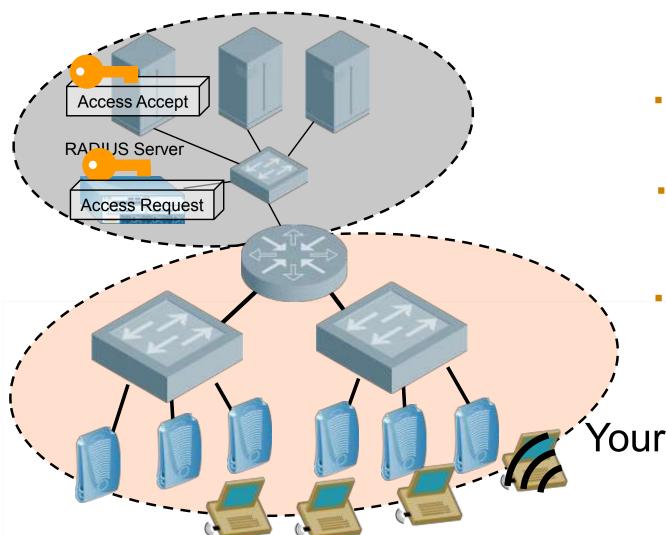
- Every frame received by the AP is processed by the IDS
 - Dedicated AMs receive a few frames on every channel
 - In AP mode all valid traffic is processed by the IDS, nothing is lost.
- All devices are tracked
 - Client and AP associations are tracked and stored.
 - All ad hoc networks are also tracked and stored
- Each frame is checked for known attacks
 - Checked for syntactic correctness is the frame OK?
 - Checked for semantic correctness does the frame make sense in context?
- Any problems are sent to the controller for correlation and disposition
 - Repeat alerts are suppressed as per policy
 - Traps and logs are generated for external systems like AirWave

Layer 2 - Authenticate

Authenticate devices

- Aruba enforces machine authentication before user authentication
- Prevent non-corporate devices from accessing the network
- Use a dynamic firewall like Aruba PEF to put authenticated devices outside the CDE until a user logs in
- Authenticate users
 - Recommend using a centralized directory for accounts
 - PCI DSS requires processes for disabling and terminating access.

Layer 2 – Encrypt



ALL wireless traffic

- Use WPA2 Enterprise with AES where possible
- If Enterprise is not feasible use PSK
- Across unsecured wired links
 - Centralized encryption allows APs to be deployed in insecure areas
 - Remote AP automatically creates IPSec tunnels back to controller even over the Internet

Layer 2 - Centralized Encryption

- Client finishes authentication and the AP sends the wireless packet to the controller
- The controller sends an access request to the RADIUS server
- The RADIUS server sends the accept and encrypted keys to the controller
- All encryption is processed centrally
 - NO keys are distributed to APs

Your Keys Never Leave Data Center

Layer 3 – Network

Classic TCP/IP network (OSI 5-7)

Threats

- Misbehaving users
- Unauthorized applications
- Bandwidth hogs
- Guests & Partners
- Regulation
 - PCI DSS section 1 use firewalls
 - PCI DSS 4.1 requires strong network encryption
 - PCI DSS section 7 use strong access control

Layer 3 – Secure the Network

Segment the network

- Use physical or virtual techniques to break the network into manageable pieces
- Segment based on business need. Example PCI DSS allows the 'cardholder data environment' to be contained in a segment thus simplifying compliance
- Segment and control applications
 - Use roles to grant access to secure applications
 - Use QoS rules to enable streaming and prevent saturation
 - Allow guests and partners minimal access or external-only access

Layer 3 - Physical Segmentation

No shared wires – VLANs are not sufficient

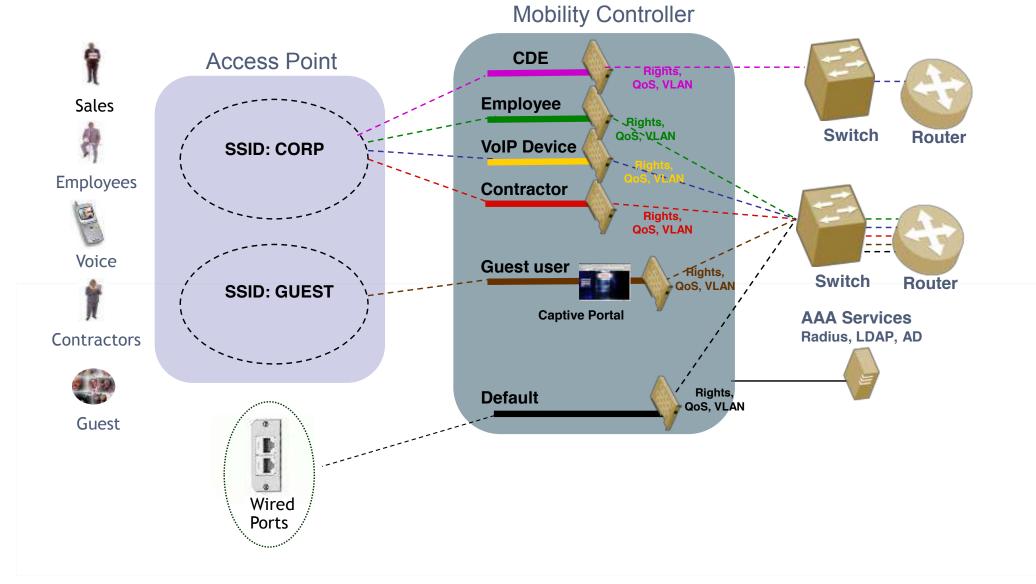
- VLAN tagging does not prevent a tap from capturing data
- VLAN tags can be spoofed
- If CDE traffic must cross untrusted segments make it strongly encrypted

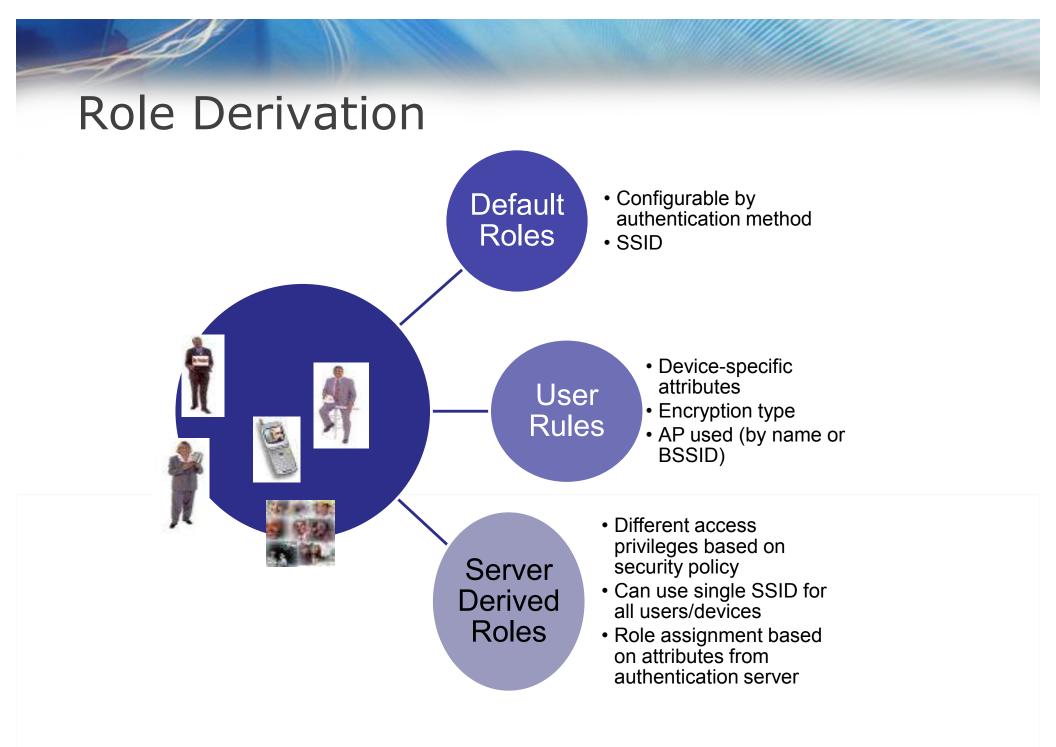
No shared switches or routers

- Unless they have a built-in firewall
- Overloaded switches can be fooled into mishandling traffic
- Routing protocols can be spoofed

No shared APs

- Unless they have a built-in firewall
- Make sure CDE SSID and non-CDE SSID traffic remains separated physically or by a firewall at all times


Policy Enforcement Firewall (PEF)


- Corner stone of Aruba Security Architecture
- Role-based
 - Derived from client or server attributes or upon successful authentication
 - Integrated architecture ensures no spoofing
 - Every untrusted IP or MAC is assigned a role
 - Layered: Layer 3 role overrides Layer 2 role
- Session ACLs define policy
 - Applied to all IP traffic (i.e. TCP and UDP)
 - From untrusted and to untrusted users
 - Rules allow, deny, or limit bandwidth
- Application Level Gateways allow complex protocols through simple rules
 - FTP active and passive
 - ✤ VoIP SIP, RTP, etc

Role-Based Separation

Multiple Classes of Users on Same Infrastructure are Kept Separate

Firewall Processing

Session processing

- Identity-based firewall policies
- Traffic management
- Protocol processing
- Traffic cleanup
 - Detects SYN, ping, ports scan attacks
 - Can prevent continued attacks (black list station)
 - Enforces TCP handshakes, prevents replay attacks
- Station blacklisting
 - Authentication failure
 - Firewall rule violation
 - TCP attacks

Layer 4 – Management

- People and process for controlling configuration and operation of the network
- Threats
 - Ignored rogues
 - Accidental configuration errors
 - Disgruntled ex-employees
 - Stolen laptops
- Regulation
 - PCI DSS section 10 requires network and security monitoring
 - PCI DSS section 12 requires documenting and following security processes

Layer 4 – Management

Monitor and Repair

- Mitigate rogues using automated methods
- Physically remove rogues
- Repair configuration
 problems
- Remove user access on termination
- Remove device access when devices are lost/stolen
- Review firewall hits and address problems

Maintain Compliance

- Regularly check configuration of all equipment
- Regularly review firewall configurations
- Regularly confirm authorized
 users and devices

Layer 4 – Secure Management

Monitor and Repair

- Wired and wireless containment minimizes the threat of rogue APs
- AirWave reports, location, switch, and port of discovered rogues
- Send alerts for configuration problems

Maintain Compliance

- Automatic configuration can repair mistakes
- Full log of all configuration changes is kept to prove continuous compliance.
- Alerts can be sent if compliance conditions are violated

Multiple Rogue Containment Methods

Deauth

- Less impact on the client device
- Best for steering authorized clients away from problem APs
- Tarpit*
 - Less RF traffic than deauth and more effective
 - Best for preventing any access to rogue APs
 - May confuse client users and client software
- Wired Containment
 - Poison ARP from AP
 - Shutdown Wired Port with AirWave RAPIDs module

Compliance Maintenance Plan

Review Period	Item
Every 90 days (A)	Remove unused accounts (8.5.5)
	Change passwords (8.5.9)
	Wireless scan (11.1)
	Vulnerability scan (internal and external) (11.2)
Every 6 months (B)	All in A
	Firewall and router configs (1.1.6)
Every year (C)	All in A + B
	Pen test (11.3)
	Security policy (12.1.3)
	Test Incident Response Plan
	Rotate crypto keys (3.6.4) (or as recommended by vendor)

Layer 5 – Audit and Report

Regular reviews of activity, process, and people

Threats

- Miscommunication
- Disgruntled administrator
- Business and regulation changes
- Regulation
 - PCI DSS requirements for process also require its review (e.g. 12.1.3)
 - PCI DSS is updated every two years

Layer 5 - Audit and Report

Audit device inventory

- AirWave automatically tracks all devices
- Device classification can be based on a combination of rules
- Authorized devices are managed to ensure compliance

Audit configuration

- AirWave's interactive PCI report highlights potential problems
- Report can be scheduled or run on demand

Keep records

- AirWave can keep records for more than a year
- Many PCI reports can be kept for comparison
- All changes and administrator actions are logged and audited.

Demo Flow

Rogues

- Classification
- Discovery and resolution workflow
- Alerting
 - Configuration
 - Alert resolution workflow
- Reporting
 - Creating reports
 - Scheduling reports
 - Key security reports

