

# ARUBA INSTANT BEST PRACTICES & TROUBLESHOOTING

#### Technical Climb Webinar

12:00 GMT | 13:00 CET | 15:00 GST March 29th, 2016

Presenter: Barath Srinivasan

barath.srinivasan@hpe.com



### Welcome to the Technical Climb Webinar

Listen to this webinar using the computer audio broadcasting or dial in by phone.

The dial in number can be found in the audio panel, click additional numbers to view local dial in numbers.

If you experience any difficulties accessing the webinar contact us using the questions panel.



### Housekeeping



This webinar will be recorded



All lines will be muted during the webinar



How can you ask questions? Use the question panel on your screen



The recorded presentation will be posted on Arubapedia for Partners (https://arubapedia.arubanetworks.com/afp/)



# **IDENTIFYING AP AND USER HEALTH**

An insight into the areas to analyze, when a given WLAN is experiencing AP or User related performance issues.

a Hewlett Packard Enterprise company

# What is User Health?

| Signal | Speed        | Access Points       | Utilization                                            | Noise                                                          | Errors                                                                       |                                                                               |
|--------|--------------|---------------------|--------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| att    |              | d8:c7:c8:c4:01:78   | ≣                                                      |                                                                |                                                                              |                                                                               |
|        |              |                     |                                                        |                                                                |                                                                              |                                                                               |
|        |              |                     |                                                        |                                                                |                                                                              |                                                                               |
| 1      | 2            |                     | 3                                                      | 4                                                              | 5                                                                            |                                                                               |
|        | Signal<br>al | Signal Speed<br>1 2 | Signal Speed Access Points<br>d8:c7:c8:c4:01:78<br>1 2 | Signal Speed   Access Points Utilization   d8:c7:c8:c4:01:78 I | Signal Speed   Access Points Utilization   d8:c7:c8:c4:01:78     1 2     3 4 | Signal Speed   Access Points Utilization   Moise Errors   d8:c7:c8:c4:01:78 I |

| Major Focus Areas:       | <u>Signal</u> :     | Speed:                    |
|--------------------------|---------------------|---------------------------|
| 1 Client Signal Strength | Green – 20dB        | Green – >50% of Max       |
| 2 Client Throughput      | Orange – 15 – 20 dB | Orange – 25% – 50% of Max |
|                          | Red – <15 dB        | Red – <25% of Max         |

# What are the key factors for quick overview?



#### **RF Trends**:

This reading is available on IAP on a per client basis. For WMM deployments,

Signal (dB): <15 Poor 15 – 25 Acceptable >25 Good

#### Frames per sec:

Tx/Rx Retries are the prime factors to be observed here.

Acceptable values differ according to type of deployment and traffic.

# What are the key factors for quick overview?





#### Speed and Throughput:

Client bandwidth and throughput are directly related entities.

While fluctuations are acceptable for DATA-ONLY WLAN's,

Deployments which focuses on VoWLAN require a consistent and cleaner environment

Latency sensitive environments such as Warehouses (Read: Barcode scanners) and Health care facilities (Patient monitoring systems) require low retry, low interference, low bit error error rate and sometimes high throughput wireless network.

We can use this data as a dip-stick to optimize the client performance

# How do I determine if an AP is healthy?

| RF Dashboard |        |          |                          |             |       |        |
|--------------|--------|----------|--------------------------|-------------|-------|--------|
|              | Signal | Speed    | Access Points            | Utilization | Noise | Errors |
| All Clients  | att    | <b>A</b> | <u>d8:c7:c8:c4:01:78</u> |             |       |        |
|              |        |          |                          |             |       |        |
|              |        |          |                          |             |       |        |
|              | 1      | 2        |                          | 3           | 4     | 5      |
|              |        |          |                          |             |       |        |

| Utilization: %  | Noise Floor: dBm         | Error rate: fps           |
|-----------------|--------------------------|---------------------------|
| Green - <50%    | Green - >87 dBm          | Green - <5000 fps         |
| Orange – 50-75% | Orange – 80 dBm – 87 dBm | Orange – 5000 – 10000 fps |
| Red - >75%      | Red - <80 dBm            | Red - >10000 fps          |

# Instant Access point Overview



# Instant Access point Per radio utilization

100

1K

15:55

#### Radio 1: 2.4 GHz - Chan. 1

15:55

15:55

Noise Floor (dBm)

Utilization (%)

100

50

0

-70

-80

-90

-100

-110

-120

2.4 GHz Frames (fps) Drops (fps) 10K 10 1K 100 10 0 5 10 100 1K 10K 0 15:55 15:55 —Out — In 2.4 GHz Mgmt Frames (fps) Errors (fps) 10K 1K 100 10 0 5K 10

0

— In — Out

15:55

Radio 1: 2.4 GHz - Chan. 1

Overview

# CLIENT CONNECTIVITY TROUBLESHOOTING

What are the important commands to analyze in order to isolate a client connectivity issue

a Hewlett Packard Enterprise company

### Prerequisites for working on client connectivity

Ensure to have the following information made available to you by the End-User or Customer, Before beginning to work on client connectivity issues.

- Nature of the problem Frequent disconnection, Unable to associate, Does not work in specific area, Low speed, etc
- Magnitude of the issue reported How many clients are affected, Partial or complete outage
- Client specific information Mac or IP address, Client device type, OS and driver version, SSID to which client connects
- Replicable Is the issue replicable consistently or occurs on a random basis
- Deployment History Was the issue present since deployment? Did the customer do a code upgrade or config change?

# Access the support shell

| System RF Security | Maintenance   More | -   Help Logout                                |
|--------------------|--------------------|------------------------------------------------|
|                    |                    | VPN<br>IDS<br>Wired<br>Services<br>DHCP Server |
| ESSID              | Access Poin        | Support                                        |
| rechnical-Climb    | 94:04:01:00        | 190:10                                         |

| Command: AP Tech Support Dump 	 Target: 94:b4:0f:c6:9b:f6 (VC) 	 Run Auto Run Filter Clear | N | Support  |                        |         |                          |     |          |        |       |
|--------------------------------------------------------------------------------------------|---|----------|------------------------|---------|--------------------------|-----|----------|--------|-------|
|                                                                                            | i | Command: | AP Tech Support Dump 🔻 | Target: | 94:b4:0f:c6:9b:f6 (VC) 🔻 | Run | Auto Run | Filter | Clear |

Command: show log user Purpose: Useful to identify user association pattern and potential causes for disconnection

| Support                                             |                                       | <u>H</u>                                                                                                |
|-----------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------|
| Command: AP Log User 🕶                              | Target: 94:b4:0f:c6:9b:f6 (VC) ▼      | Run Auto Run Filter Clear Save                                                                          |
| 94:b4:0f:c6:9b:f6                                   |                                       |                                                                                                         |
|                                                     |                                       |                                                                                                         |
| 3/29/2016 11:31:34 AM Target: 94:b4:0f:cu           | 6:9b:f6 Command: show log user        | *****                                                                                                   |
|                                                     |                                       |                                                                                                         |
| Jan 1 08:58:36 cli[2679]: <541004> <warn></warn>    | AP 94:b4:0f:c6:9b:f6@10.17.171.35 cli | recv_sta_online: receive station msg, mac-d0:e1:40:98:5a:12 bssid-94:b4:0f:e9:bf:71 essid-Technical-    |
| Jan 1 08:58:36 $CI1[26/9]$ : <541013> <warn></warn> | AP 94:D4:UI:C6:9D:I6010.17.171.35 CI1 | recv_sta_online, 1125: add Cilent du;e1:40:98:5a112, Cilent count 1.                                    |
| Tap = 1 09.01.22 cli[2679]: <541004> <warn></warn>  | AP 94:04:01:00:90:10010.17.171.35 CII | recy_sta_sta_update: receive station msg, mac-dutertersorsariz_bssta-stiptic:result:// essid_recim.     |
| Jan = 1 09:01:22 cli[2679]: <541004> <warn></warn>  | AP 94:b4:0f:c6:9b:f6@10.17.171.35 cli | recy_sta_online: receive station msg, mac-doi:1:40:98:5a:12 bssid=94:b4:0f:e9:bf:71 essid=Technical.    |
| Jan 1 09:01:22 cli[2679]: <541004> <warn></warn>    | AP 94:b4:0f:c6:9b:f6@10.17.171.35 cli | recv stm sta update: receive station msg, mac-d0:e1:40:98:5a:12 bssid-94:b4:0f:e9:bf:71 essid-Techn.    |
| Jan 1 09:01:32 cli[2679]: <541004> <warn></warn>    | AP 94:b4:0f:c6:9b:f6@10.17.171.35 cli | recy sta offline: receive station msg, mac-d0:e1:40:98:5a:12 bssid-00:2d:66:00:00:00 essid              |
| Jan 1 09:05:26 cli[2679]: <541004> <warn></warn>    | AP 94:b4:0f:c6:9b:f6@10.17.171.35 cli | recv_sta_offline: receive station msg, mac-58:94:6b:7a:42:44 bssid-00:2d:66:00:00:00 essid              |
| Jan 1 09:18:31 cli[2679]: <541023> <warn></warn>    | AP 94:b4:0f:c6:9b:f6@10.17.171.35 cli | <pre>swarm_timer_handler,9879: del client d0:e1:40:98:5a:12, client count 0.</pre>                      |
| Jan 1 09:23:56 cli[2679]: <541004> <warn></warn>    | AP 94:b4:0f:c6:9b:f6@10.17.171.35 cli | recv_sta_online: receive station msg, mac-d0:e1:40:98:5a:12 bssid-94:b4:0f:e9:bf:71 essid-Technical     |
| Jan 1 09:23:56 cli[2679]: <541013> <warn></warn>    | AP 94:b4:0f:c6:9b:f6@10.17.171.35 cli | recv_sta_online,1125: add client d0:e1:40:98:5a:12, client count 1.                                     |
| Jan 1 09:23:56 cli[2679]: <541004> <warn></warn>    | AP 94:b4:0f:c6:9b:f6@10.17.171.35 cli | recv_stm_sta_update: receive station msg, mac-d0:e1:40:98:5a:12 bssid-94:b4:0f:e9:bf:71 essid-Techn.    |
| Jan 1 10:16:39 stm[2726]: <501209> <warn></warn>    | AP 94:b4:0f:c6:9b:f6@10.17.171.35 stm | Remove stale user d0:e1:40:98:5a:12, driver age out                                                     |
| Jan I 10:16:39 $CII[2679]$ : $<541004> $            | AP 94:D4:UI:C0:9D:I6010.17.171.35 C11 | recv_sta_offilme: receive station msg, mac-au:e1:40198:5a:12 bssid=00:22:66:100:00:00 essid=.           |
| Tan = 1 10:27:43 $CII[2679]: <541004> $             | AP 94:54:01:00:55:10010.17.171.35 CII | recy stm sta update: receive station msg. mac-d0:e1:40:98:5a:12 bssid-94:b4:01:e9:bf:71 essid-Technical |
| San I ISTERIO SILLEONIJI SILOUP SMILLE              |                                       |                                                                                                         |

Command: show ap association Purpose: Verify if the user is indeed associating to the intended access point/radio band or not

| Command:               | AP Associ                  | ation Table 🔻                                                        | Target: 9                                   | 4:b4:0f            | :c6:9b:f6          | 5 (VC)         | •                 | Run Auto              | Run        |             | Filter            | Clear        |             |        |               | Save |
|------------------------|----------------------------|----------------------------------------------------------------------|---------------------------------------------|--------------------|--------------------|----------------|-------------------|-----------------------|------------|-------------|-------------------|--------------|-------------|--------|---------------|------|
| 94:b4:0f:              | c6:9b:f6                   |                                                                      |                                             |                    |                    |                |                   |                       |            |             |                   |              |             |        |               |      |
| *****                  | ******                     | ****                                                                 | *****                                       | *****              | *****              | ****           | *****             | ****                  | ****       |             |                   |              |             |        |               |      |
| 3/29/201<br>********   | 6 11:42:2<br>*******       | 7 AM Target: 94:<br>*******************                              | b4:0f:c6:9b:f6                              | Command<br>******  | : show<br>******   | ap as<br>***** | sociati<br>****** | .on<br>************** | ******     |             |                   |              |             |        |               |      |
| The phy c              | olumn sho                  | ws client's operati                                                  | onal capabilities i                         | for cur            | rent as            | socia          | tion              |                       |            |             |                   |              |             |        |               |      |
| Flags: A:              | Active,                    | B: Band Steerable,                                                   | H: Hotspot(802.11u)                         | ) clien            | t, K: 8            | 02.11          | K clien           | t, R: 802.11R         | client, W: | WMM client, | w: 802.11w client | V: 802.11v E | SS trans ca | apable |               |      |
| PHY Detai              | ls: HT<br>VHT<br><n>ss</n> | : High throughput;<br>: Very High through<br>: <n> spatial strea</n> | 20: 20MHz; 40<br>aput; 80: 80MHz; 160<br>ms | 0: 40MH<br>0: 160M | z; t: t<br>Hz; 80p | urbo-<br>80: 8 | rates (<br>OMHz + | 256-QAM)<br>80MHz     |            |             |                   |              |             |        |               |      |
| Associati              | on Table                   |                                                                      |                                             |                    |                    |                |                   |                       |            |             |                   |              |             |        |               |      |
| Name                   |                            | bssid                                                                | mac                                         | auth               | assoc              | aid            | l-int             | essid                 | vlan-i     | d tunnel-id | phy               | assoc. time  | num assoc   | Flags  | DataReady     |      |
| 94:b4:0f:<br>Num Clien | c6:9b:f6<br>ts:1           | 94:b4:0f:e9:bf:71                                                    | d0:e1:40:98:5a:12                           | У                  | У                  | 1              | 10                | Technical-Cli         | mb 3333    | 0x0         | a-VHT-80sgi-2ss   | 37m:26s      | 1           | W      | Yes (Implicit | )    |

#### Command: show network

Purpose: If a specific client is experiencing coverage issues, would it be possible that the AP is frequently dropping out of the cluster and overwrites with a different config, which causes it to not broadcast the intended ESSID to the end user?

Specifically applicable for customer environments with high congestion on wired network.

| Command: AP E                          | SSID Table 🔻                           | Targ                                   | et: 94:                    | b4:0f:c6:9b:f6 (VC) ▼                  | Run Auto Ru          | n                        |                    | F    | ilter              |
|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------|----------------------------------------|----------------------|--------------------------|--------------------|------|--------------------|
| 94:b4:0f:c6:9b                         | :f6                                    |                                        |                            |                                        |                      |                          |                    |      |                    |
| ************************************** | ************************************** | ************************************** | *******<br>6 Co:<br>****** | ************************************** | *************        | *****                    |                    |      |                    |
| Networks                               |                                        |                                        |                            |                                        |                      |                          |                    |      |                    |
| Profile Name                           | ESSID                                  | Clients Type                           | Band                       | Authentication Method                  | Key Management       | IP Assignment            | Status             | Zone | Coding             |
| Tech-Climb<br>Technical-Clim           | Tech-Climb<br>Technical-Climb          | 0 employe<br>1 employe                 | e all<br>e all             | None<br>None                           | WPA2-AES<br>WPA2-AES | Default VLAN<br>NAT Mode | Enabled<br>Enabled |      | Default<br>Default |

Command: show ap bss-table Purpose: Used to identify is a specific radio band is broadcasting the required ESSID or not Command: AP BSSID Table -Target: 94:b4:0f:c6:9b:f6 (VC) -Auto Run Filter Run 94:b4:0f:c6:9b:f6 3/29/2016 11:53:48 AM Target: 94:b4:0f:c6:9b:f6 Command: show ap bss-table \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Aruba AP BSS Table \_\_\_\_\_ bss ch/EIRP/max-EIRP cur-cl ap name port ip phy type in-t(s) tot-t ess \_\_\_\_ \_\_\_ \_\_\_\_ 94:b4:0f:e9:bf:70 Tech-Climb ?/? 10.17.171.35 a-VHT ap 52E/22/220 94:b4:0f:c6:9b:f6 0 6m:3s 94:b4:0f:e9:bf:71 Technical-Climb ?/? 10.17.171.35 a-VHT ap 52E/22/22 1 94:b4:0f:c6:9b:f6 0 2h:15m:13s 94:b4:0f:e9:bf:60 Tech-Climb ?/? 10.17.171.35 g-HT 1/21/21 0 6m:3s ap 94:b4:0f:c6:9b:f6 0 94:b4:0f:e9:bf:61 Technical-Climb ?/? 10.17.171.35 g-HT 1/21/21 0 94:b4:0f:c6:9b:f6 0 2h:15m:13s ap Channel followed by "\*" indicates channel selected due to unsupported configured channel. "Spectrum" followed by "^" indicates Local Spectrum Override in effect. Num APs:4 Num Associations:1

#### Command: show ap debug radio-stats 0

Purpose: If the customer is reporting that their users are noticing very low data transfer speeds despite having low number of clients associated on a perAP basis, this command becomes quite useful.

It can be used to identify what is the fluctuation in channel busy percentage. NOTE: Radio '0' denotes 5Ghz radio

| Command: AP Radio 0 Stats 🕶  | Targe               | t: 94:b4:0f:c6:9b:f6 (VC) ▼            | Run Auto Run F                                    |
|------------------------------|---------------------|----------------------------------------|---------------------------------------------------|
| 94:b4:0f:c6:9b:f6            |                     |                                        |                                                   |
| Rx Total Data Bytes Recvd    | 1192939505          |                                        |                                                   |
| Rx Total RTS Frames Recvd    | 1805822             |                                        |                                                   |
| Rx Total CTS Frames Recvd    | 1997371             |                                        |                                                   |
| Rx Total ACK Frames          | 1884378             |                                        |                                                   |
| Rx Total Beacons Received    | 8038809             |                                        |                                                   |
| Rx Total Probe Requests      | 151723              |                                        |                                                   |
| Rx Total Probe Responses     | 1082573             |                                        |                                                   |
| Rx Retry Frames              | 376897              |                                        |                                                   |
| Channel Busy 1s              | 25                  |                                        |                                                   |
| Channel Busy 4s              | 30                  |                                        |                                                   |
| Channel Busy 64s             | 30                  |                                        |                                                   |
| Ch Busy perct @ beacon intvl | 25 25 25 25 25 25   | 25 25 25 25 25 30 30 30 30 30 30       | 30 30 30 30 35 35 35 35 35 35 35 35 35 35 35      |
| Rx Time perct @ beacon intvl | 20 20 20 20 20 20 2 | 20 20 20 20 20 21 21 21 21 21 21 21 21 | . 21 21 21 21 23 23 23 23 23 23 23 23 23 23 23 23 |

#### Command: show ap debug radio-stats 1

Purpose: If the customer is reporting that their users are noticing very low data transfer speeds despite having low number of clients associated on a perAP basis, this command becomes quite useful. It can be used to identify what is the fluctuation in channel busy percentage. NOTE: Radio '1' denotes 2.4Ghz radio

| Command: AP Radio 1 Stats -  | Target:          | : 94:b4:0f:c6:9b:f6 (VC) -         | Run Auto Run                                 |
|------------------------------|------------------|------------------------------------|----------------------------------------------|
| 94:b4:0f:c6:9b:f6            |                  |                                    |                                              |
| Rx Total ACK Frames          | 65559            |                                    |                                              |
| Rx Total Beacons Received    | 3625446          |                                    |                                              |
| Rx Total Probe Requests      | 8478             |                                    |                                              |
| Rx Total Probe Responses     | 65605            |                                    |                                              |
| Rx Retry Frames              | 150311           |                                    |                                              |
| Channel Busy 1s              | 61               |                                    |                                              |
| Channel Busy 4s              | 62               |                                    |                                              |
| Channel Busy 64s             | 63               |                                    |                                              |
| Ch Busy perct @ beacon intvl | 61 61 61 61 61 6 | 1 61 61 61 61 67 67 67 67 67 67 67 | 67 67 67 67 55 55 55 55 55 55 55 55 55 55 55 |
| Rx Time perct @ beacon intvl | 41 41 41 41 41 4 | 1 41 41 41 41 40 40 40 40 40 40 40 | 40 40 40 40 38 38 38 38 38 38 38 38 38 38 38 |

#### Command: show arm config

Purpose: To have a quick overview of the Adaptive radio management configuration and determine the power setting configuration when working on low client signal issues

| Command: AP ARM Configu                                   | ration 🔻           | Target:  | 94:b4:0f:c6:9b:f6 (VC) - |
|-----------------------------------------------------------|--------------------|----------|--------------------------|
| 94:b4:0f:c6:9b:f6                                         |                    |          |                          |
| *****                                                     | ****               | ******   | ******                   |
| 3/29/2016 12:23:29 PM<br>******************************** | Target: 94:b4:0f:c | c6:9b:f6 | Command: show arm config |
| Minimum Transmit Power                                    | :18                |          |                          |
| Maximum Transmit Power                                    | :127               |          |                          |
| Band Steering Mode                                        | :prefer-5ghz       |          |                          |
| Client Aware                                              | :enable            |          |                          |
| Scanning                                                  | :enable            |          |                          |
| Wide Channel Bands                                        | :5ghz              |          |                          |
| 80Mhz Support                                             | :enable            |          |                          |
| Air Time Fairness Mode                                    | :fair-access       |          |                          |

Command: show arm-channels

Purpose: Channels enabled for ARM to move the AP's to beacon on

| Command: | AP ARM Channels | ,                             | Target:           | 94:b4:0f:c6:9b:f6 (VC) -   |
|----------|-----------------|-------------------------------|-------------------|----------------------------|
| 94:b4:0f | :c6:9b:f6       |                               |                   |                            |
| *****    | ****            | *****                         | ******            | ****                       |
| 3/29/20  | 16 12:36:15 PM  | Target: 94:b4:0f:c6<br>****** | :9b:f6<br>******* | Command: show arm-channels |
| 2 4 6115 |                 |                               |                   |                            |
| 2.4 GHZ  |                 |                               |                   |                            |
| Channel  | Status          |                               |                   |                            |
|          |                 |                               |                   |                            |
| 1        | enable          |                               |                   |                            |
| 2        | disable         |                               |                   |                            |
| 3        | disable         |                               |                   |                            |
| 4        | disable         |                               |                   |                            |
| 5        | disable         |                               |                   |                            |
| 6        | enable          |                               |                   |                            |
| 7        | disable         |                               |                   |                            |
| В        | disable         |                               |                   |                            |
| 9        | disable         |                               |                   |                            |
| 10       | disable         |                               |                   |                            |
| 10       |                 |                               |                   |                            |

Command: show valid-channels

Purpose: Channels enabled for the designated AP radio to scan the immediate WLAN environment.

The data acquired through these scans helps the VC to build a repository which determines the best channel to which the AP can move, in the event that the existing channel becomes too congested for optimal client performance.

NOTE: This is frequently confused with ARM channels. It is vital to be able to clearly differentiate between what are valid channels and ARM channels

| 94:b4:0f:c6        | :9b:f6      |             |                         |                             |
|--------------------|-------------|-------------|-------------------------|-----------------------------|
| *****              | *****       | *****       | *****                   | *****                       |
| 3/29/2016<br>***** | 12:39:00 PM | Target: 94: | b4:0f:c6:9b:f6<br>***** | Command: show valid-channe: |
| 2.4 GHz            |             |             |                         |                             |
| 1                  |             |             |                         |                             |
| 2                  |             |             |                         |                             |
| 3                  |             |             |                         |                             |
| 4                  |             |             |                         |                             |
| 5                  |             |             |                         |                             |
| 6                  |             |             |                         |                             |
| 7                  |             |             |                         |                             |
| 8                  |             |             |                         |                             |
| 9                  |             |             |                         |                             |
| 10                 |             |             |                         |                             |
| 11                 |             |             |                         |                             |
| 12                 |             |             |                         |                             |
| 13                 |             |             |                         |                             |
| 1 <del>1</del>     |             |             |                         |                             |
| 2+<br>3+           |             |             |                         |                             |
| 4+                 |             |             |                         |                             |
| 5+                 |             |             |                         |                             |
| 5+<br>6+           |             |             |                         |                             |
| 7+                 |             |             |                         |                             |
| 8+                 |             |             |                         |                             |
| 0.1                |             |             |                         |                             |

Command: show ap arm history

Purpose: If there is an excessive interference in the WLAN network or if there is a coverage hole in the network, ARM has the ability to adjust the AP's channel and power accordingly to optimize performance.

In this example, we see that there are numerous channel changes occurring where the reason is mention as I – denoting 'Interference'

| Command: AP ARM His                                                                      | story 🔻                       |                            | Target: 94           | :b4:0f:c6:9b:        | f6 (VC) 🔻        |
|------------------------------------------------------------------------------------------|-------------------------------|----------------------------|----------------------|----------------------|------------------|
| 94:b4:0f:c6:9b:f6                                                                        |                               |                            |                      |                      |                  |
| *****                                                                                    | * * * * * * * * * * * * * * * | **********                 | ******               | *****                | *****            |
| 3/29/2016 12:44:17                                                                       | PM Target:                    | 94:b4:0f:c6:               | 9b:f6 Co             | ommand: show         | v ap arm hi      |
| *****                                                                                    | *****                         | *****                      | *******              | *******              | ******           |
|                                                                                          |                               |                            |                      |                      |                  |
| ARM History                                                                              |                               |                            |                      |                      |                  |
|                                                                                          |                               |                            |                      |                      |                  |
| Time of Change                                                                           | Old Channel                   | New Channel                | Old Power            | New Power            | Reason           |
|                                                                                          | 1405                          | 265                        |                      |                      | <br>-            |
|                                                                                          | 149E                          | 30E                        | 24                   | 24                   | 1                |
|                                                                                          | JZE<br>JCE                    | 1496                       | 24                   | 24                   | 1                |
|                                                                                          | 30E                           | 32E                        | 24                   | 24                   | 1<br>T           |
|                                                                                          | 1496                          | 30E                        | 24                   | 24                   | 1<br>T           |
| 19/0-01-01 00:4/:32                                                                      | 201                           | 1496                       | 24                   | 24                   | T                |
| 1070 01 01 00 41 00                                                                      | 1405                          | 265                        | 24                   | 24                   | -                |
| 1970-01-01 08:41:26                                                                      | 149E                          | 36E                        | 24                   | 24                   | I                |
| 1970-01-01 08:41:26<br>1970-01-01 08:36:44                                               | 149E<br>36E                   | 36E<br>149E                | 24<br>24             | 24<br>24             | I                |
| 1970-01-01 08:41:26<br>1970-01-01 08:36:44<br>1970-01-01 08:29:27                        | 149E<br>36E<br>149E           | 36E<br>149E<br>36E         | 24<br>24<br>24       | 24<br>24<br>24       | I<br>I<br>I      |
| 1970-01-01 08:41:26<br>1970-01-01 08:36:44<br>1970-01-01 08:29:27<br>1970-01-01 08:24:49 | 149E<br>36E<br>149E<br>52E    | 36E<br>149E<br>36E<br>149E | 24<br>24<br>24<br>24 | 24<br>24<br>24<br>24 | I<br>I<br>I<br>I |

#### Command: show ap arm neighbors

#### Purpose: The AP would be scanning the list of valid channels and during

this scan, it would be able to detect the neighboring BSSID, ESSID, Channel, SNR, txpower of discovered radio, Path loss and the type of scan via the discovery was made.

This information is useful when working with customers who have their IAP network setup in a multitenant environment and to verify if any of the neighboring BSS are encroaching on a channel allocated to the customer in concern.

| Command: AP ARM N     | Neighbors 🔻 |         |     | Target: 94 | 1:b4:0f:c6: | 9b:f6 (VC)  | •  |
|-----------------------|-------------|---------|-----|------------|-------------|-------------|----|
| 94:b4:0f:c6:9b:f6     |             |         |     |            |             |             |    |
| ARM Neighbors         |             |         |     |            |             |             |    |
| bssid                 | essid       | channel | snr | tx-power   | PL (dB)     | AP Flags    | La |
| <br>18:64:72:a0:76:52 | alpha-wpa2  | 64      | 43  | <br>18     | <br>66      | <br>Passive |    |
| 18:64:72:02:0b:91     | rguestcpt   | 56      | 46  | 21         | 68          | Passive     |    |
| 18:64:72:02:0b:92     | rguestcpat  | 56      | 45  | 21         | 68          | Passive     |    |
| 18:64:72:02:0b:93     | GUHOAdev    | 56      | 46  | 21         | 68          | Passive     |    |
| 18:64:72:02:0b:94     | leowavet    | 56      | 45  | 21         | 68          | Passive     |    |
| 9c:1c:12:8a:7c:31     | test123     | 52      | 8   | 22         | 105         | Passive     |    |
| 40:e3:d6:be:2c:31     | ssid_914    | 52      | 15  | 18         | 100         | Passive     |    |
| 40:e3:d6:be:2c:35     | ssid_8514   | 52      | 12  | 18         | 100         | Passive     |    |
|                       | <b>•</b> •  |         |     |            | ~ ~         |             |    |

# **BEST PRACTICES**

Default WLAN config is not suitable for all customer environments. The following section gives a preview of how to right-size a given WLAN depending on requirements and environmental conditions.



# Best Practices – Network RightSizing

What is meant by network Right-Sizing?

It is a proven fact that network rightsizing results in cutting network operation costs by 70%. Converging from wired to wireless would be the first step but optimizing the WLAN environment for best performance is absolute key for your customers to achieve this result.

You can refer the following data for in-depth details,

http://www.arubanetworks.com/pdf/technology/whitepapers/wp Rightsizing.pdf

http://www.arubanetworks.com/assets/so/SB\_Rightsizing.pdf

Optimizing a poorly performing WLAN may result in customers requiring fewer data ports to be active, Also the connected devices can utilize the VHT data rates along with mobility, which results in an extremely agile as well as high performing access network for your customers.

The primary bottleneck is during the post-deployment phase, where the deployed network under-performs. Let us have a quick overview on how to help customers optimize this and take advantage of their HPE-Aruba WLAN.

# Adaptive Radio Management Config – AP Tx Power

Adjust the AP's transmit power to suit the customer environment. More Tx power does not always mean that the AP

is performing at its best.

While this could mean that the AP is going to have a larger coverage cell,

If the Min Tx power of the AP is forced to a higher value, it is very much likely to cause Interference for a valid neighbor AP in the cluster, Especially in the 2.4Ghz radio as the channels get re-used more frequently compared to 5Ghz

| Access Point Control      |            |
|---------------------------|------------|
| Customize valid channels: |            |
| Min transmit power:       | 9 \$       |
| Max transmit power:       | 24 🗘       |
| Client aware:             | Enabled \$ |
| Scanning:                 | Enabled \$ |
| Wide channel bands:       | 5 GHz 🗘    |
| 80MHz support:            | Enabled \$ |

# Adaptive Radio Management Config – AP Tx Power

How do I quickly determine what would be a suitable Tx power range for a customer? They cannot budget a site survey just for this purpose.

The customer does not have to run a WLAN network analysis to determine this. Observe the Tx EIRP of the AP's in the cluster, if the Min Tx is set to 18 and most of the AP's

are reporting their Tx EIRP as '18', then the next step would be to check whether we have ARM doing excessive channel changes with the reason being "I - Interference".

#### LOGIC:

As the Min Tx has already been capped at a high value, the AP is trying to shrink its cell size.

However, it cannot push lower than 18, hence it keeps bouncing between multiple channels.

# Adaptive Radio Management Config – AP Tx Power

What is the next course of action if we see that AP's are either stuck at Min Tx Or Max Tx EIRP?

While its permissible for AP's to use Min and Max Tx power levels, a network wide usage of this signifies room for improvement.

Min Tx – Excessive coverage Max Tx – Potential coverage hole

If AP's are stuck in Min Tx, try and reduce the ARM Min Tx value by 3 dBm until the AP stops reporting interference

If the AP is stuck in Max Tx, Check whether there are any AP coverage holes and the specific AP may need to be moved/oriented, else the area might require an additional access point.

### Band Steering – Prefer 5Ghz

Ensure customer network uses band steering whenever permissible. Default configuration is as below and may not be applicable for all customers.

There are three modes for Band steering with the default being – Prefer 5Ghz. If the conditions below are met, the AP will not respond to 2.4Ghz probe from the client.

- The client has already probed the AP on the 5Ghz band and therefore is known to be capable of sending probes on the 5Ghz band.
- The client is not currently associated on the 2.4Ghz radio to this AP.
- The client has sent less than 8 probes requests/auth in the last 10 seconds. If the client has sent more than 8 probes in the last 10 seconds, the client will be able to connect using whatever band it prefers

| RF                       |                |
|--------------------------|----------------|
| ARM Radio                |                |
| Client Control           |                |
| Band steering mode:      | Prefer 5Ghz \$ |
| Airtime fairness mode:   | Fair Access \$ |
| Client match:            | Enabled 🗘      |
| CM calculating interval: | 3 seconds      |
| CM neighbor matching %:  | 75 %           |
| CM threshold:            | 5              |
| SLB mode:                | Channel 🗘      |

### Band Steering – Force 5Ghz

Ensure customer network uses band steering whenever permissible. Default configuration is as below and may not be applicable for all customers.

Force 5Ghz is applicable in cases where we have an already very crowded 2.4Ghz spectrum and additionally, the available 5Ghz clients are exhibiting sticky client behavior are not preferring to join 5Ghz radio.

AP will stop responding to client's 2.4Ghz probe, if

- The client has already probed the AP on the 5Ghz band and therefore is known to be capable of sending probes on the 5Ghz band.
- The client is not currently associated on the 2.4Ghz radio of this AP.

| RF                       |              |
|--------------------------|--------------|
| ARM Radio                |              |
| Client Control           |              |
| Band steering mode:      | Force 5Ghz 🛟 |
| Airtime fairness mode:   | Fair Access  |
| Client match:            | Enabled \$   |
| CM calculating interval: | 3 seconds    |
| CM neighbor matching %:  | 75 %         |
| CM threshold:            | 5            |
| SLB mode:                | Channel \$   |

### Band Steering – Band Balance

Ensure customer network uses band steering whenever permissible. Default configuration is as below and may not be applicable for all customers.

In this band steering mode, the AP uses client load and RSSI information to balance the clients across the two radios and best utilize the available 2.4G bandwidth.

This feature takes into account the fact that the 5Ghz band has more channels than the 2.4 Ghz band, and that the 5Ghz channels operate in 40MHz while the 2.4Ghz band operates in 20MHz.

Due to the higher bandwidth availability in 5Ghz, it is always preferred to have a higher ratio of 5Ghz band based client association.

| RF                       |                 |  |  |
|--------------------------|-----------------|--|--|
| ARM Radio                |                 |  |  |
| Client Control           |                 |  |  |
| Band steering mode:      | Balance Bands 🗘 |  |  |
| Airtime fairness mode:   | Fair Access 💠   |  |  |
| Client match:            | Enabled \$      |  |  |
| CM calculating interval: | 3 seconds       |  |  |
| CM neighbor matching %:  | 75 %            |  |  |
| CM threshold:            | 5               |  |  |
| SLB mode:                | Channel 🗘       |  |  |

### Efficient Channel Management System

Customizing valid channels available for the AP to operate is a key factor in improving WLAN performance.

Customer network might need this for following reasons,

- Presence of a known Rogue AP in a specific channel
- Heavy Utilization of a specific channel by neighboring/multitenant WLAN
- 3<sup>rd</sup> party stand alone WLAN video/security cameras operating in a certain channel

| RF                        |                                                                                                                           |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|
| ARM Radio                 |                                                                                                                           |
| Client Control            |                                                                                                                           |
| Band steering mode:       | Prefer 5Ghz 🛟                                                                                                             |
| Airtime fairness mode:    | Fair Access                                                                                                               |
| Client match:             | Enabled \$                                                                                                                |
| CM calculating interval:  | 3 seconds                                                                                                                 |
| CM neighbor matching %:   | 75 %                                                                                                                      |
| CM threshold:             | 5                                                                                                                         |
| SLB mode:                 | Channel \$                                                                                                                |
| Access Point Control      |                                                                                                                           |
| Customize valid channels: |                                                                                                                           |
| Valid 5 GHz channels:     | 36, 40, 44, 48, 52, 56, 60, 64, 149, 153, 157,<br>161, 165, 36+, 44+, 52+, 60+, 149+, 157+,<br>36E, 52E, 149E <u>Edit</u> |
| Valid 2.4 GHz channels:   | 1, 6, 11, 1+, 7+ <u>Edit</u>                                                                                              |

### Efficient Channel Management System

In this example, We are removing channel – 11 From being a part of the valid channel list.

With the scenario where – Channel 11 is considered as a known LOW PERFORMING channel.

By removing it from ARM channel as well as valid channel list, AP's performance can be improved.

#### RF ARM Radio **Client Control** Valid 2.4 GHz Channels Band steering mode: Available: Selected: Airtime fairness mode: 2 1 3 6 Client match: 4 1+5 7+ CM calculating interval: >7 11 8 CM neighbor matching %: » 9 CM threshold: 10 12 < SLB mode: 13 **«** 2+ Access Point Control 3+ 4+ Customize valid channels: 5+ 9, 153, 157, Valid 5 GHz channels: 49+, 157+, OK Cancel Valid 2.4 GHz channels: 1, 6, 11, 1+, 7+ Edit

#### **Enable Client Match**

Client Match is important as it integrates multiple Features into a unified stream.

On clicking an access point in the Access Points tab and the Client Match link, a stations map view is

displayed and a graph is drawn with real-time data points for the AP radio. If the AP supports dual band, you

can toggle between 2.4GHz and 5 GHz links in the client match graph area to view the data. When you hover

the mouse on the graph, details such as RSSI, client match status, and the client distribution on channels are displayed.

| RF                       |             |    |
|--------------------------|-------------|----|
| ARM Radio                |             |    |
| Client Control           |             |    |
| Band steering mode:      | Prefer 5Ghz | \$ |
| Airtime fairness mode:   | Fair Access | \$ |
| Client match:            | Enabled     | ¢  |
| CM calculating interval: | 30 seconds  |    |
| CM neighbor matching %:  | 75 %        |    |
| CM threshold:            | 30          |    |
| SLB mode:                | Channel     | \$ |
|                          |             |    |

### **Enable Client Match**



### **Use Airtime Fairness feature Effectively**

The airtime fairness feature provides equal access to all clients on the wireless medium, regardless of client type, capability, or operating system, thus delivering uniform performance to all clients.

This feature prevents the clients from monopolizing AP's radio resources.

Default Access – This option will provide access based on client requests. When Air Time Fairness is set to default access, per user and per SSID bandwidth limits are not enforced.

Fair Access – This option will allocate Airtime evenly across all the clients.

Preferred Access - Select this option to set a preference where 11n clients are assigned more airtime than 11a/11g. The 11a/11g clients get more airtime than 11b. The ratio is 16:4:1

| RF                                                                    |                                                                            | Help      |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------|-----------|
| ARM<br>Band steering mode:<br>Airtime fairness mode:<br>Client match: | Default Access <ul> <li>✓ Fair Access</li> <li>Preferred Access</li> </ul> |           |
| Show advanced options                                                 |                                                                            | OK Cancel |

### Next month

- Original topic request: Aruba Instant Best practices and Troubleshooting
- Split in two Technical climbs:
  - Today: Part1: Basics Identifying AP and User health, Best Practices
  - Next month on Technical Climb Webinar: Part2: Advanced Troubleshooting, WMM
    - Quick Recap of Part-1 Essentials required for the session-2
    - Understanding and interpreting system debug logs
    - · What does it really mean? How to use it to fix customer network issues
    - What is WMM? How does it work with Aruba Instant AP's?

# QUESTIONS

#### Any Questions?

a Hewlett Packard Enterprise company