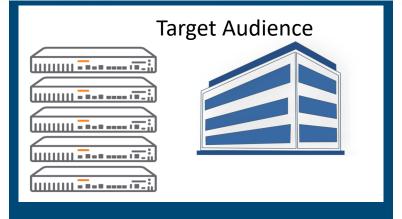


AIRWAVE & GLASS


AirWave 10

Introduction

What?

New software build that lets us streamline code, add performance, clustering.

Who's it For?

Large existing customers early on.

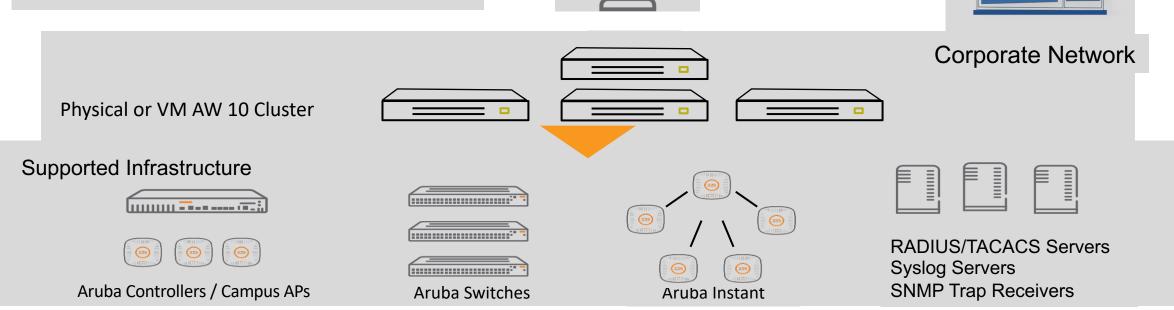
Customers running 2 or more AMP appliances.

Deployment

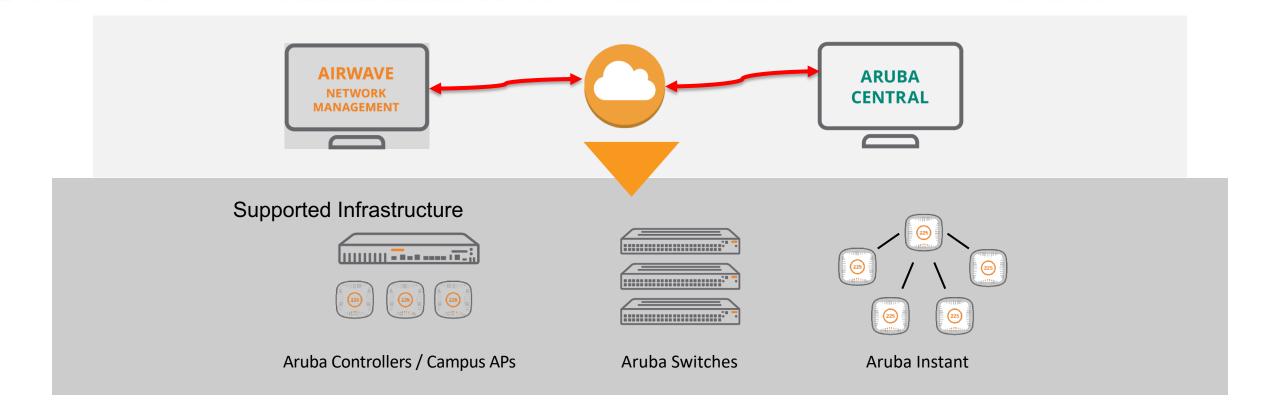
As of now, the plan is to deploy in two ways,

- On-Premises
- > Cloud

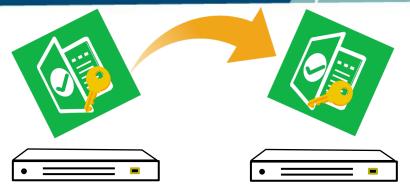
On-Premises: It is in-house solution where either a single node or cluster deployment could be implemented. Single node supports up to 4K devices whereas cluster could support up to 25K devices


Cloud: The first solution is market which allows devices to be fully deployed and managed over cloud implementation, similar as of Aruba Central

On-Premises Deployment Architecture


- Single server supports 4K devices
- Cluster supports 25K devices

Cloud Deployment Architecture



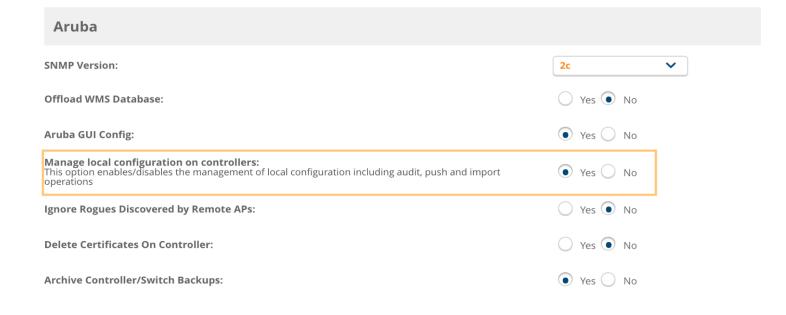
Fundamentals

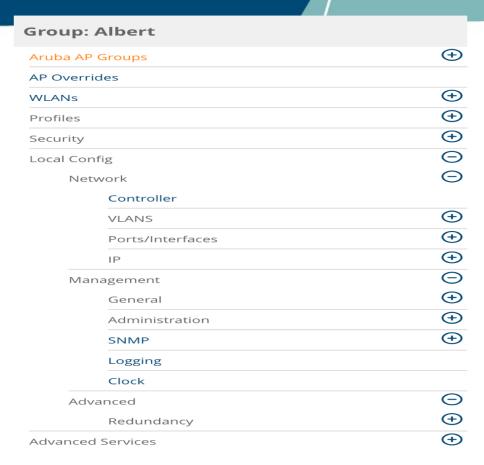
- > The hardware sizing guide for on-premises deployment is remodelled for Airwave 10
- > AirWave 10 will have all the features that of 8, Mobility Master (WMS), ALE and Glass (Roadmap)
- Initial release support would be for Aruba wired and wireless only
- ➤ The ISO would not be provided to Customer
- Customers with multi-vendor devices should maintain both 8 and 10 initially

Licensing and Migration

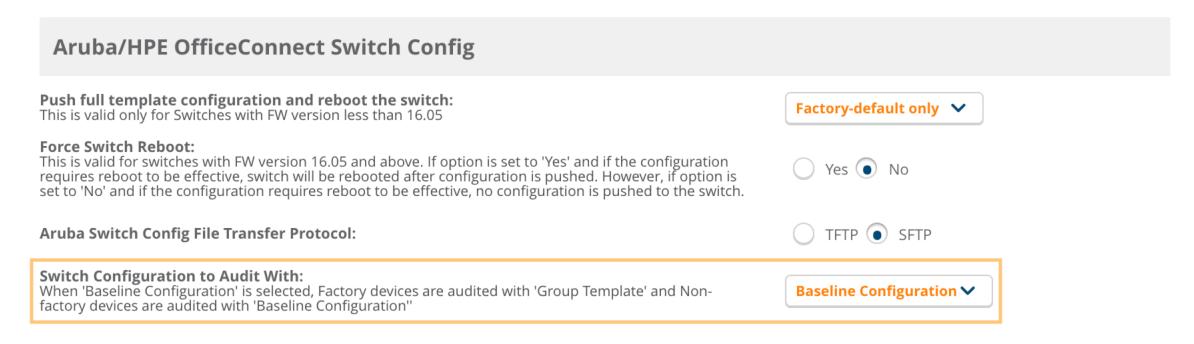
- ➤ AirWave 8 license would be migrated to 10
- > A new support portal would be launched for this license conversion
- ➤ Migration of database AirWave 8 to 10 is reliable, waiting for more update

10


8


AirWave 8

What's New in AirWave 8?


- ➤ Device Monitoring/Management
- ➤ Code Enhancements (NGINX, HTML5, RabbitMQ)
- ➤ Database Modifications (Postgres 9.4, Redis)

Controllers – Managing Local configuration

Switching – Group Template and Baseline Configuration

Device Configuration (Chennai-5400-1)

This Device is in monitor-only-with-firmware-upgrades mode.

Group Albert **Folder** Top

IP Address 10.29.160.8 **Type** Aruba 5412Rzl2

Status Up (OK)

Configuration Mismatched

Audit

View SSH Command Log

Config Backups

				Con	npare Back Up N	low
Name	Timestamp	Baseline	Version	Comments	Action	
Current Running Configur	7/29/2018, 2:14:41 PM		KB.16.05.0007BB1	Latest Configuration from	◎ ₺ ⋛	
Config_Backup_7_29_201	7/23/2018, 1:21:57 AM		KB.16.05.0007BB1	Archived at 7/29/2018 5:1	© & ₹	
Config_Backup_7_17_201	7/16/2018, 1:21:28 AM		KB.16.05.0007BB1	Archived at 7/17/2018 4:2	© & ≥	
Config_Backup_6_30_201	6/29/2018, 1:21:52 AM		KB.16.05.0007BB1	Archived at 6/30/2018 4:2	© & ₹	
Config_Backup_6_27_201	6/25/2018, 1:21:28 AM	~	KB.16.05.0007BB1	Archived at 6/27/2018 4:2	◎ 🏕 🕏	

Config Job	>
1 Config Command 2 Select Device 3 Schedule 4 Confirm	
Job Name *	
Job Description	
Device Type *	
Aruba Controllers Aruba Switches Comware Switches	
Config Snippet *	

Code Enhancements

NGINX over Apache

- ➤ Light-weight resource utilization
- > Load Balancing between threads allocated
- > Response time during load

Code Enhancements

HTML5 over Flash

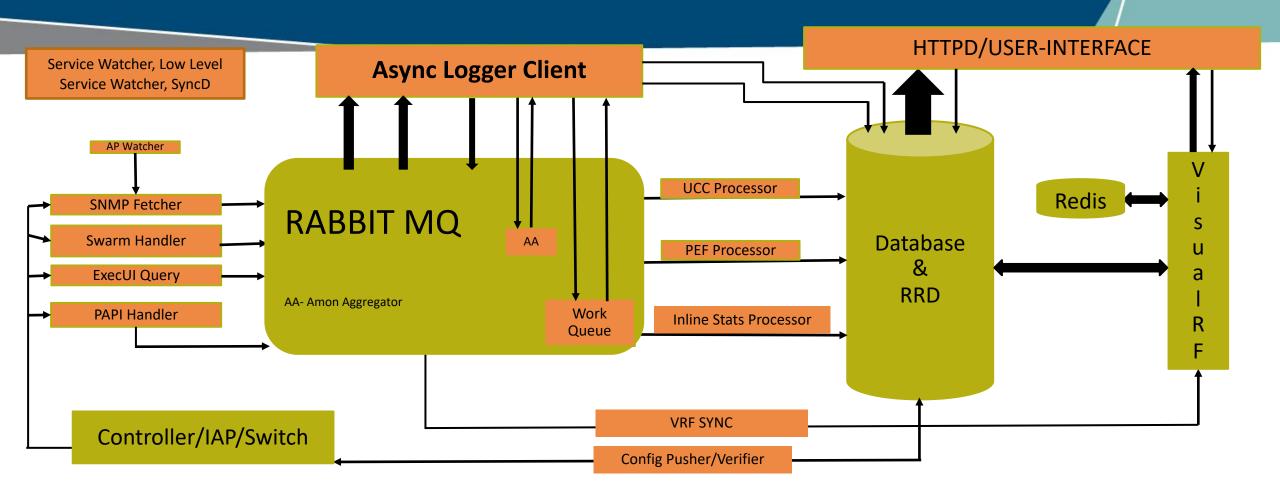
- ➤ Open-source and User-Friendly
- > 58% Faster than Flash in Linux
- > Access of HTM5 in Mobiles/iPAD Best Output/Content
- > Stability of Flash in Linux

Code Enhancements

RabbitMQ over AirBus

- > RabbitMQ is an open source message broker software
- > AMQP Advanced Message Queuing Protocol and plug in architecture
- > Uses high reliable python scripting in queuing incoming and outgoing messages
- ➤ Gateways for <u>AMQP</u> and <u>HTTP</u> protocols

Database Modifications

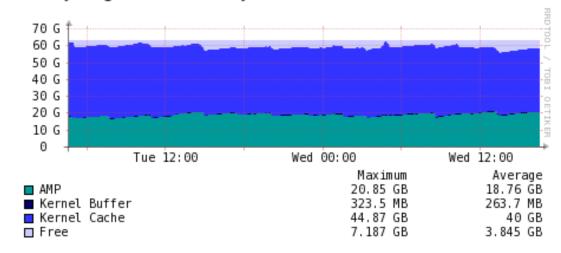

Postgres

> Postgres is upgraded from 9.2 to 9.4

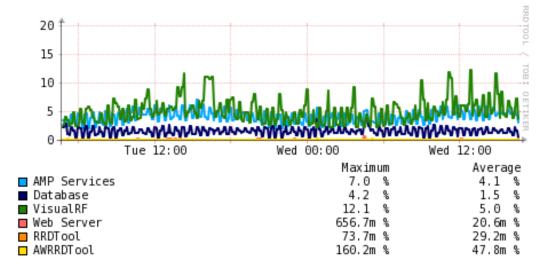
Redis

- > Redis is an open-source in-memory remote database
- > It runs in virtual memory
- ➤ Uses small structure for high durability

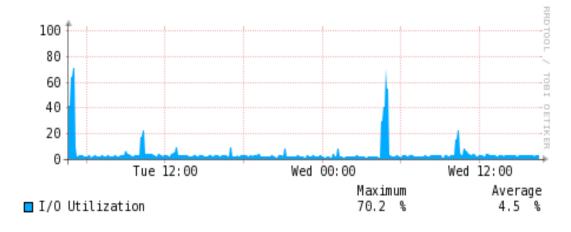
Architecture

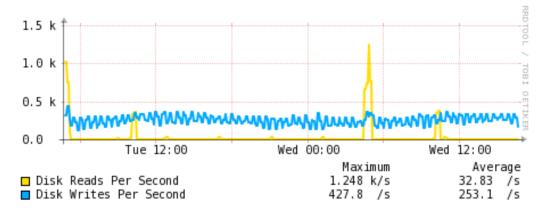

- > The CLI access has been limited from 8.2
- > Performance and Troubleshooting could be still be done with UI

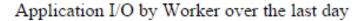
System -> Backups

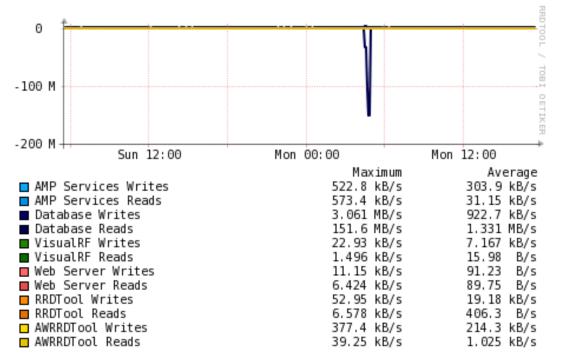

System -> Status

System -> Performance

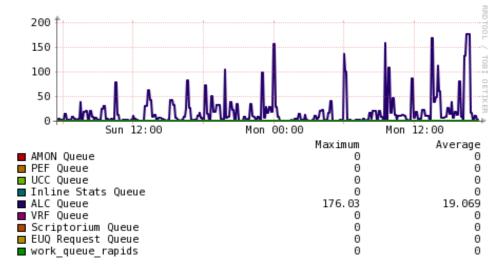

Memory usage over the last day

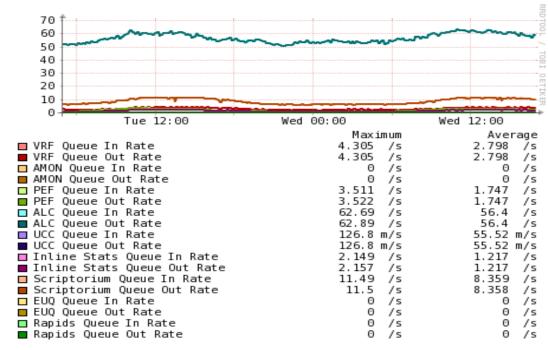

CPU Utilization by Worker over the last day



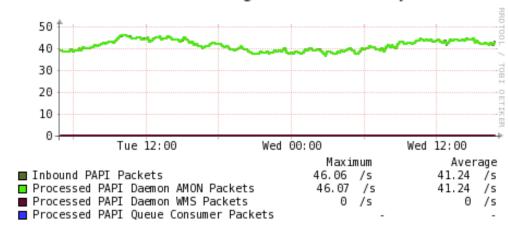

Disk utilization over the last day

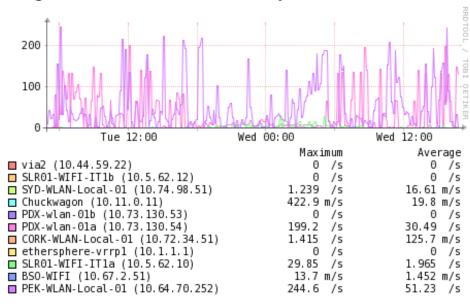
Disk IOPs over the last day





Top 5 Tables (by row count)							
TABLE	ROW COUNT	SIZE	% OF DB				
aggregate_session	12059505	1713 MB	2.0%				
pickled_ap_cpu	9316304	1269 MB	1.4%				
pickled_ap_memory	4554971	481 MB	0.5%				
device_event	4423060	30 GB	35.4%				
pef_summary_application_30_mins	3960829	315 MB	0.4%				


RabbitMQ Queue Depth over the last day


RabbitMQ Queue In Rate over the last day

AMON Packet Arrival / Processing Rate over the last day

Average PAPI Packet Loss over the last day

VisualRF Statistics
https://<AMP IP>/visualrf/statistics.xml

Output:

```
<memory type="heap" max="3959488k" committed="3959488k" used="2347483k"/>
<service started="true" failed="false" uptime="7d:19h:27m:32s" request_time_ms="29" queue="0" queue-completed="6740" internal="0" internal-completed="106"/>
<thread name="Message" blocked-count="1" status="TIMED_WAITING">
<service started="true" failed="false" uptime="7d:19h:27m:47s" request_time_ms="0" queue="0" queue completed="0" internal="0" internal-completed="606944" internal-hp="0" internal-hp-completed="922568" additional="message-bus messages count [vrf 606743 vrf_sync 922568 channel_util 0 rtls 201]"/>
<thread name="Grid Builder" blocked-count="67" status="TIMED_WAITING"></thread name="Grid Builder" blocked-count="67" status="TIMED_WAITING"></thread name="Grid Builder" blocked-count="67" status="TIMED_WAITING">
```

Glass

Why Glass?

- Glass is the fastest single point of access to monitor both wireless and wired infrastructure
- > It could be used in two ways,

Single Node Cluster

- ➤ A single node monitors up to 30000 and 50000 devices with controller AMON and SNMP data respectively
- Cluster monitors up to 60000 and 100000 devices with controller AMON and SNMP data respectively

Why Fastest?

> Glass uses 4 major open source tools yet the best futuristic in the market,

Kubernetes Grafana Elastic-Search DB Kibana

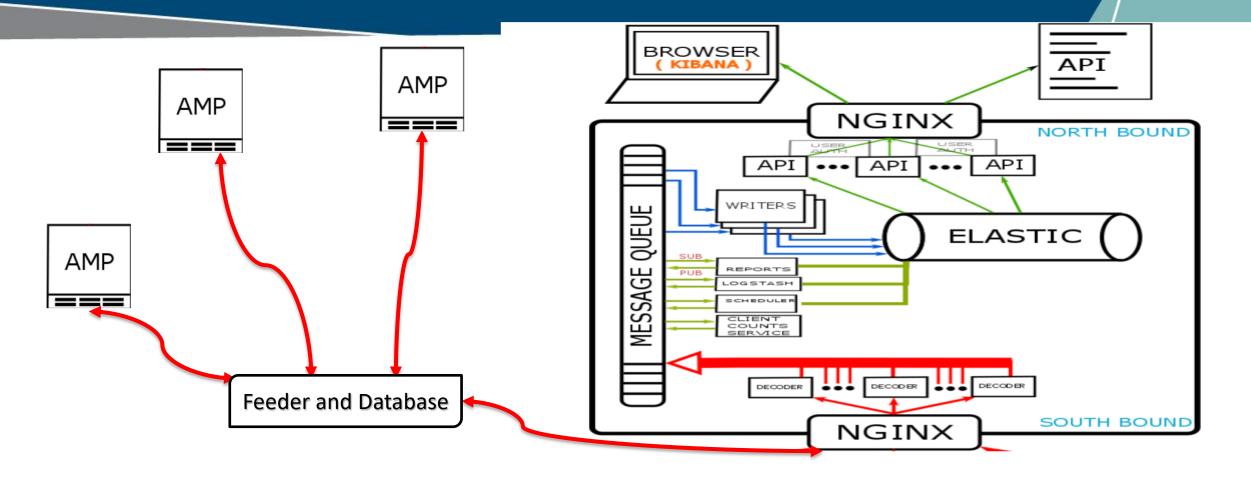
> API protocol is used in accessing the data in and out.

Kubernetes | Elastic-Search DB | Kibana | Grafana | API

Kubernetes: It breaks up an application into logical units called as 'PODS' placed in containers for easy management

Elastic-Search DB: It is used to perform and combine many types of searches — structured, unstructured, geo, metric — any way an application want. It is a flat DB which makes queries faster.

Kibana: It provides visualization capabilities on top of the content indexed on an Elasticsearch cluster and logs it


Grafana: It makes it easy to customize the display properties so that the perfect Dashboard could be created

API: It is a software intermediary that allows two applications to talk to each other.

Northbound interface allows a particular component of a network to communicate with a higher-level component.

Southbound interface allows a particular network component to communicate with a lower-level component.

Architecture

Single Node vs Cluster

- > A Single node should be installed in 1 TB hard drive, 16 Cores of CPU (2*8) and 96 GB of Memory
- > Single Node/Cluster, the appliance should have a fully qualified domain name
- > A cluster should be minimum of 3, it could not be created with 2 nodes
- Kubernetes distributes pods across 3 nodes to provide high availability in case of failure, at least 2 nodes should be up for cluster running
- > Kubernetes dashboard, Grafana monitoring and Kibana logging can be accessed from Master node only

Installation:

- > Hardware box comes up with Glass 1.2 installed in it and takes to setup page on power on
- ➤ In case of VM, use the OVA to deploy Core OS
- > Login to the server using the default admin username and password (admin/admin)
- > At the command prompt, execute the command # sudoglass-install
- > After the installation completes, execute the command # glass-setup to configure network

Single Node and Cluster:

- > The second step in # glass-setup is to set as single node or cluster
- In case of multi node cluster, virtual IP should be configured with Master and Master-HA nodes
- Future cluster setup could be done by executing # cluster-setup command from one of the nodes CLI. This node becomes Master Node and other 2 nodes become Master HA Nodes

Upgrade:

- ➤ Upgrade could be done from UI and CLI.
- > UI, the option would pop-up for upgrade

Upgrade:

Login to the single or master node with the admin username and password

> At the command prompt, execute the command # glass-upgrade

```
admin@abc ~ $ glass-upgrade

1. Core OS upgrade
2. Kubernetes Upgrade
q. Quit

Enter option:
```

- > Run the CoreOS and then Kubernetes upgrade followed by it
- > Running either upgrade on cluster Master node will push to all Glass in cluster
- > A reboot is necessary after both the upgrades respectively

QUESTIONS?

Email: albert.raja@hpe.com

Phone: +1 281 257 7820 Extn.: 6342447

Time: US – Covering EST and PST

THANK YOU!

