Dorothy Stanley, Aruba Networks Craig Mathias, Farpoint Group

Fact vs. Fiction Gigabit Wi-Fi 802.11ac

ARUBA networks

Webinar Overview

- The next major development in wireless LAN technologies 802.11ac
- Features, benefits, and limitations
- Availability and timelines
- Real-world throughput expectations
- Migration planning, requirements, and related costs
- Gigabit Wi-Fi use cases
- Setting expectations for the enterprise

Our Speakers for Today

Dorothy Stanley

- Head of Standards Strategy, Aruba Networks
- Chair IEEE 802.11v, IEEE 802.11Revmb
- Liaison IEEE 802.11 to IETF
- Vice-chair Wi-Fi Alliance Security Marketing, Security Technical and Wireless Network Management Marketing Task Groups

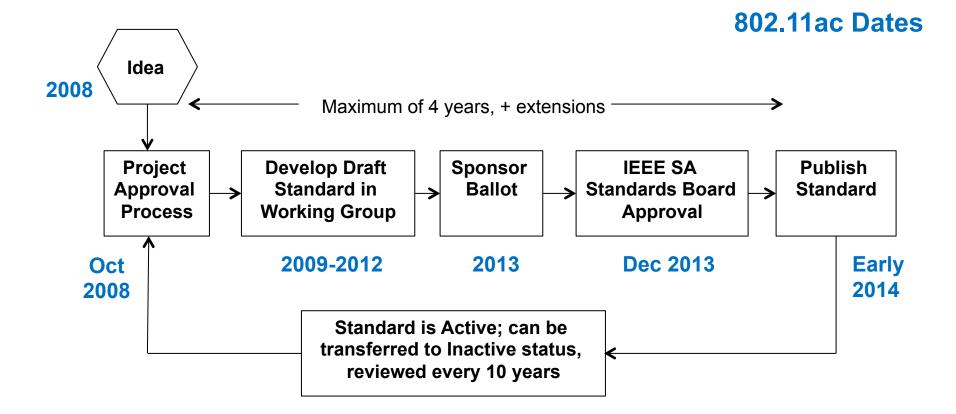
Craig Mathias

- Founder (1991) and Principal with Farpoint Group
- Advisory services for wireless and mobile
- Member, IEEE
- Advisory Board Member for Interop, Co-Chair of Mobile Connect, and Analyst Partner at 4G World
- Columns for Information Week and TechTarget
- Blog at Network World

Standards Review Dorothy Stanley

11ac Standards Discussion

- 1. IEEE P802.11ac Project Definition, Scope & Schedule
- 2. Benefits: Usage Models & Application Environments
- 3. Key Technical Components
- 4. Summary


IEEE P802.11ac Basics

- **Title**: Enhancements for Very High Throughput for operation in bands below 6GHz
- **Scope:** Modifications to both the 802.11 physical layers (PHY) and the 802.11 Medium Access Control Layer (MAC)
 - At least 1 Gbps Multi-station (STA) throughput and a maximum single link throughput of at least 500 Mbps.
 - 6 GHz below carrier frequency operation excluding 2.4 GHz
 - Backward compatible and coexistence with legacy IEEE802.11 devices in the 5 GHz unlicensed band.
- Project Purpose: Significantly higher throughput for existing WLAN application areas and to enable new market segments for operation below 6 GHz including distribution of multiple multimedia/data streams.

Source: P802.11ac Project Authorization Request (PAR)

IEEE Standards Development: Process Flow – 802.11ac

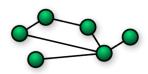
Source: https://mentor.ieee.org/802.11/dcn/10/11-10-0617-01-0000-ieee-standards-process-overview.ppt and http://standards.ieee.org/develop/policies/opman/sb_om.pdf

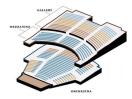
An aside: 802.11ad ≠ 802.11ac

• IEEE 802.11ad:

- 60GHz specification
- Appropriate for shorter range in-room use cases
- Gigabit data rates
- Expected approval in Dec 2012

802.11ac Categories of Usage


Wireless Display


In Home Distribution of HDTV and other content

Rapid Upload/Download of large files to/from server

Backhaul Traffic (e.g. Mesh, Point-to-Point)

Campus / Auditorium deployments

Manufacturing Floor Automation

	Source:
	https://mentor.ieee.org/802.11/
nts	dcn/07/11-07-2988-04-0000-
	liaison-from-wi-fi-alliance-to-
	802-11-regarding-wfa-vht-
	study-group-consolidation-of-
	usage-models.ppt
	also see:
	https://mentor.ieee.org/802.11/
	dcn/09/11-
	09-0161-02-00ac-802-11ac-
	usage-model-document.ppt

Example: Video requirements

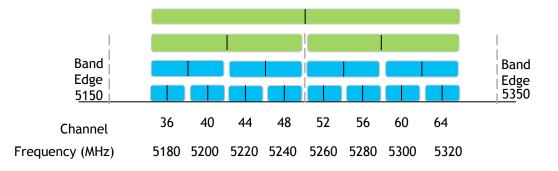
Video type	Description	Rate	Packet error rate	Jitter	Delay
Uncompressed	720p (RGB) 1280x720 pixels; 24 bits/pixel, 60 frame/sec	1.3 Gbps	10 ⁻⁸	5 msec	5 msec
	1080i (RGB) 1920x1080/2 pixels; 24 bits/pixel, 60 frame/sec	1.5 Gbps	10 ⁻⁸	5 msec	5 msec
	1080p (YCrCb) 1920x720 pixel; 24 bits/pixel, 60 frame/sec	1.5 Gbps	10 ⁻⁸	5 msec	5 msec
	1080p (RGB) 1920x720 pixel; 24 bits/ pixel, 60 frame/sec	3.0 Gbps	10 ⁻⁸	5 msec	5 msec
Lightly Compressed	Motion JPEG2000	150 Mbps	10 ⁻⁷	10 msec	10 msec
	H.264	70 - 200 Mbps	10 ⁻⁷ 10 ⁻⁸	20 msec	20 msec
Compressed	Blu-ray™	50 Mbps	10 ⁻⁷	20 msec	20 msec
	HD MPEG2	20 Mbps	3x10 ⁻⁷	20 msec	20 msec

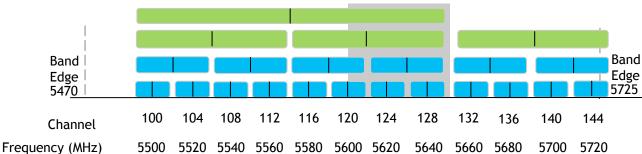
Key Technical Components

- 1. Wider channels: 80 MHz &160 MHz channel bandwidths
- 2. New modulation & coding: 256-QAM, rate ³/₄ and 5/6, added as optional modes
- 3. More spatial streams: Up to 8 (had 4 in 802.11n)
- 4. Multi-user MIMO (MU-MIMO)

Source: IEEE 802.11ac framework document, see

https://mentor.ieee.org/802.11/dcn/09/11-09-0992-21-00ac-proposed-specification-framework-for-tgac.doc


80 MHz and 160 MHz channel bandwidths


- 80 MHz mandatory, 160 MHz optional
- 80 MHz channels are 'new' channels:
 - Like two 40 MHz channels but with tones in the middle filled in
- 160 MHz channels are defined as two 80 MHz channels
 - May be contiguous or non-contiguous

© Copyright 2012. Aruba Networks, Inc. All rights reserved

20/40 and 80/160 Channelization

US-only U-NII 3 / ISM band 5725-5825 MHz 5x 20 MHz channels 2x 40 MHz channels 1x 80 MHz channel

• Slightly different rules apply for channel 165 in ISM spectrum

Channels defined for 5 GHz bands (U.S. regulations), showing 20, 40, 80 and 160 MHz channels (channel 144 is now allowed in the U.S. for one additional 20 MHz, one 40 MHz and one 80 MHz channel)

8x 20 MHz channels 4x 40 MHz channels 2x 80 MHz channels 1x 160 MHz channel U-NII II requires DFS (& TPC if over 500mW / 27dBm EIRP)

US U-NII I and U-NII II bands

U-NII 2: 5250-5350 MHz

U-NII I: 5150-5250 MHz (indoors only)

US intermediate band (U-NII 2 extended) 5450-5725 MHz 12x 20 MHz channels 6x 40 MHz channels 3x 80 MHz channels 1x 160 MHz channel Requires DFS (& TPC if

over 500mW / 27dBm EIRP)

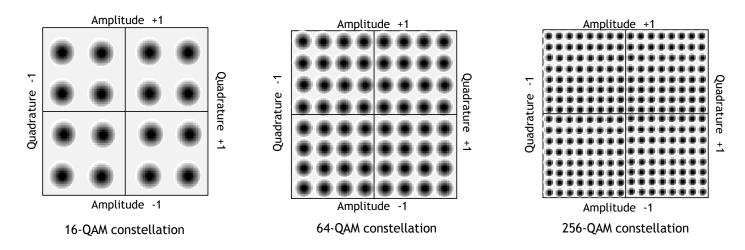
• 5600-5650 MHz is used by weather radars and is temporarily not available in the U.S.

Deployment Considerations – RF Planning

• 160MHz

- It is unlikely we will see wide adoption of 160MHz channels, but no doubt some special applications will emerge to use this option.
- 80MHz
 - Five available 80MHz channels (three require DFS) should be sufficient for overlapping access points to provide contiguous coverage

• <80MHz:


 Some networks will have reasons to prefer a higher number of smaller-width channels

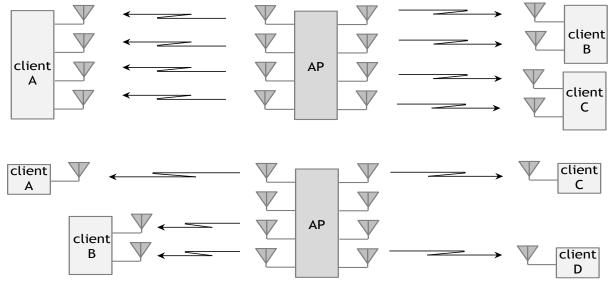
© Copyright 2012. Aruba Networks, Inc. All rights reserved

Modulation

- Adds 256-QAM options with coding of 3/4 and 5/6.
 - Compared to 802.11n: 64-QAM 5/6
- Provides a higher 'raw data' top speed
- Higher order modulation leverages advances in radio technology, to better distinguish constellation points
- All the earlier options are still available, used if SNR is too low to sustain the highest rates.

Constellation diagrams for 16-, 64-, 256-QAM

More Spatial Streams


- Up to 8 spatial streams in both single-user (SU) and multi-user (MU) (was 4 max in 802.11n)
 - 8SS performance will only be possible where both devices have 8 antennas.
 - Without innovative antenna designs, this probably precludes handheld devices, but access points, set top boxes and the like will be able to use multiple streams.
- Adding spatial streams increases throughput proportionally. Assuming multipath conditions are favorable,
 - Two streams offer double the throughput of a single stream
 - Eight streams increase throughput eight-fold

© Copyright 2012. Aruba Networks, Inc. All rights reserved

11ac Multi-User MIMO

- MIMO:
 - 802.11n Introduced MIMO (Multiple Input, Multiple Output) spatial division multiplexing for dramatic improvements in data rate
- Multi-User MIMO
 - Multiple devices, each with potentially multiple antennas, transmit or receive independent data streams simultaneously
 - **Requires beamforming** techniques to steer signal maxima over the desired clients while minimizing interference at other clients.

© Copyright 2012. Aruba Networks, Inc All rights reserved

802.11ac achievable link rates

Channel bandwidth	Transmit - Receive antennas	Modulation and coding etc	Typical client scenario	Throughput (individual link rate)	Throughput (aggregate link rate)
80 MHz	1x1	256-QAM 5/6, short guard interval	Smartphone	433 Mbps	433 Mbps
80 MHz	2x2	256-QAM 5/6, short guard interval	Tablet, PC	867 Mbps	867 Mbps
160 MHz	1x1	256-QAM 5/6, short guard interval	Smartphone	867 Mbps	867 Mbps
160 MHz	2x2	256-QAM 5/6, short guard interval	Tablet, PC	1.73 Gbps	1.73 Gbps
160 MHz	4x Tx AP, 4 clients of 1x Rx	256-QAM 5/6, short guard interval	Multiple smartphones	867 Mbps per client	3.47 Gbps
160 MHz	8x Tx AP, 4 clients with total of 8x Rx	256-QAM 5/6 , short guard interval	Digital TV, set-top box, tablet, PC, smartphone	867 Mbps to two 1x clients 1.73 Gbps to one 2x client 3.47 Gbps to one 4x client	6.93 Gbps
160 MHz	8x Tx AP, 4 clients of 2x Rx	256-QAM 5/6, short guard interval	Multiple set-top boxes, PCs	1.73 Gbps to each client	6.93 Gbps

802.11ac vs 802.11n

802.11ac enhancement	Notes	Improvement over current 802.11n	Max theoretical improvement over 802.11n
80 MHz, 160MHz channel	Over 40MHz in 802.11n (but how often is a 160MHz channel practical?)	~ 2.1x (80MHz)	4.2x (160MHz)
8 Spatial streams	Over max 4 spatial streams in 802.11n (but only just seeing 3SS 802.11n in the field)	~ 2x (4SS vs 2SS)	1x (4SS vs 4SS without MU-MIMO)
256-QAM 3/4 and 5/6 modulation	Over 64-QAM 5/6 in 802.11n	~ 1.2, 1.33x	~ 1.2, 1.33x
Beamforming (implementable BF)	No explicit BF in current 802.11n systems due to complexity	~1.5x	~2x
Multi-user downlink MIMO	Over single-user MIMO in 802.11n	~1.5x	~2x
Total improvement		~10x	~20x

(estimates only - performance depends on clients, traffic profiles, neighboring WLANs etc.)

WFA Industry Certification

- Wi-Fi Alliance Work is underway for Draft 11ac Certification
 - Expected to be available 1H 2013
 - Based on IEEE 802.11ac draft
 - Followed by "Final ac"

Summary: 11ac – 5GHz VHT

- What 802.11ac Offers:
 - Higher bandwidth, enable new applications
- Benefits:
 - New Usage Models & Application Environments
- Key Technical Components:
 - Significant improvements from wider channels, higher-rate modulation and higher-level MIMO
 - Together they offer a top speed that is >10x that of 802.11n
- Certification Status 2013

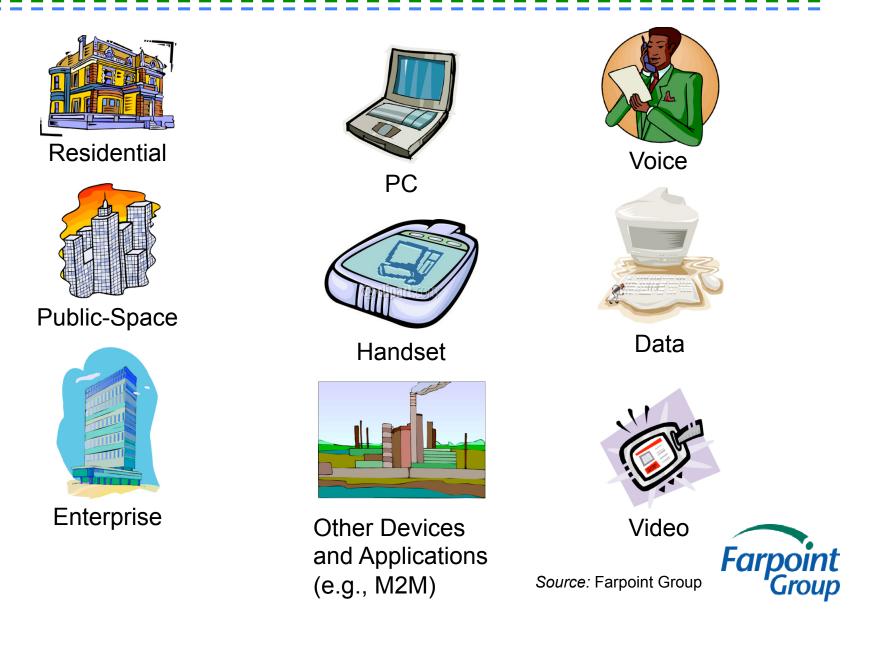
802.11ac and the Enterprise

Craig J. Mathias • Principal

Copyright 2012 – All rights reserved

Topics for Discussion...

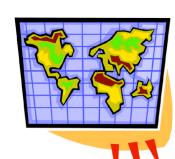
- Why demand for Wi-Fi capacity will continue to grow rapidly
- How 802.11ac will change the enterprise wireless LAN
 - Evolution, not revolution
- It's not just about the PHY...
 - The continuing importance of architecture and management
- Trends and timelines
- Alternatives for the enterprise now
- Conclusions and recommendations



Wi-Fi Forever

- First a toy, then a tool, now part of the culture *globally!*
- No competition from any other wireless technology
- Enterprise, personal, public-space (hotspot and metro-scale)
- Voice, data, video the mobile Triple Play
- 802.11n removed the last barrier for enterprise installations
 - All other issues have been addressed for essentially all industries and applications
- Key differentiation in enterprise-class products is in architecture and management
 - But AP/radio implementations can still make a big difference!
- Next gigabit-class WLANs
 - 802.11ac and ad
- Today's enterprise goal: capacity, not just coverage or throughput alone
 - And reliability and scalability

Wi-Fi as Default/Primary Access Venues, Subscriber Units, Applications

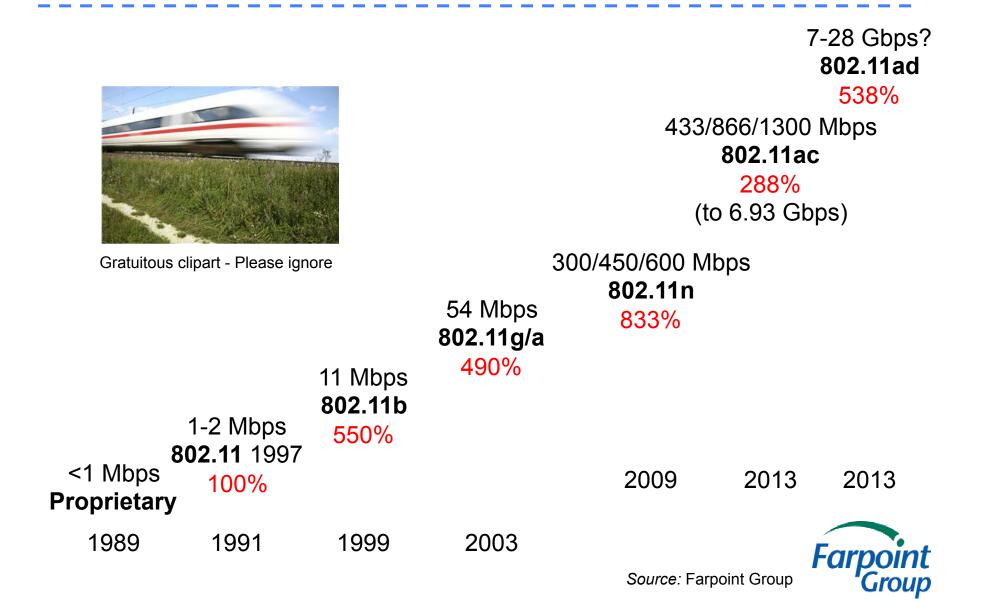

Wi-Fi: Key Trends

Device Proliferation

- Handsets
- Notebooks
- Tablets
- Users with *multiple* devices

Wireless as an *Expectation* and Requirement

- Default/primary access
- All venues
- All applications extreme diversity
- Staff, customer, and guest use
- Social networks, media access
- Evolution to gigabit (802.11ac/ad)



Increasing Dependence on Wi-Fi

- Core driver: convenience
- *Capacity*, not just throughput
- Mobile Triple Play
- Density: users drive infrastructure
- Coverage everywhere
- Complementary to cellular
 - Cellular offload

802.11ac – Breaking the Gigabit Barrier

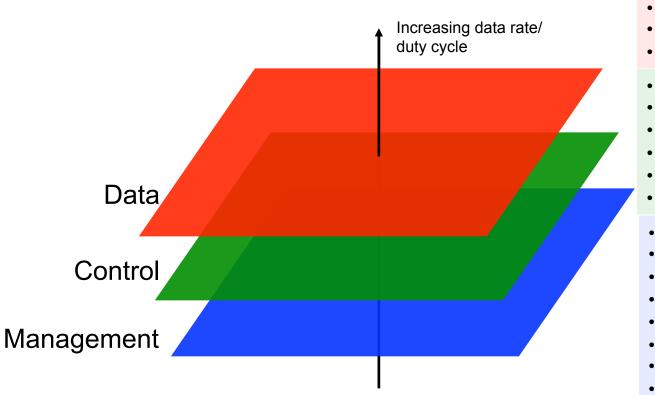
WLANs – Key Requirements

It's Not Really About Throughput – It's About *Capacity*

Dense Deployments

- Maximize channel utilization
- Maximize throughput/reliability by minimizing range

RF Management Techniques


- Beamforming
- Beamsteering
- Bandsteering
- Auto channel/power selection
- Spectral analysis

Traffic prioritization/Airtime fairness Load balancing

Solutions that also work with .11ac

Architecture Matters: The "Planes" Model of Enterprise WLAN Systems

- Distributed
- Centralized
- Capacity
- Distributed
- Centralized
- Hybrid/Adaptive
- "OS" traffic flow
- Resource management
- Policy Implementation
- Centralized
- Planning
- Configuration
- Deployment
- Administration
- Security
- Integrity
- Monitoring
- Logging, Reporting, Compliance
- Troubleshooting
- Alerts, Alarms, Exceptions
- Assurance

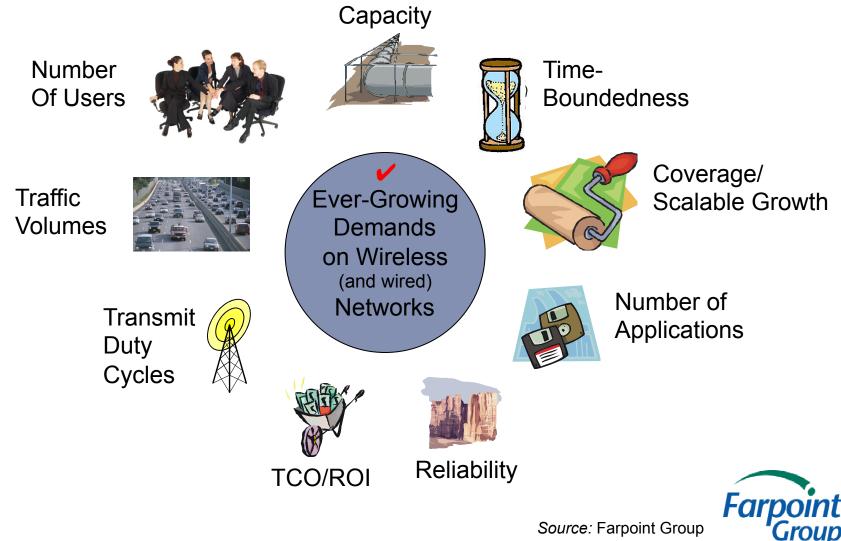
802.11ac Unknowns

5 GHz. Bands

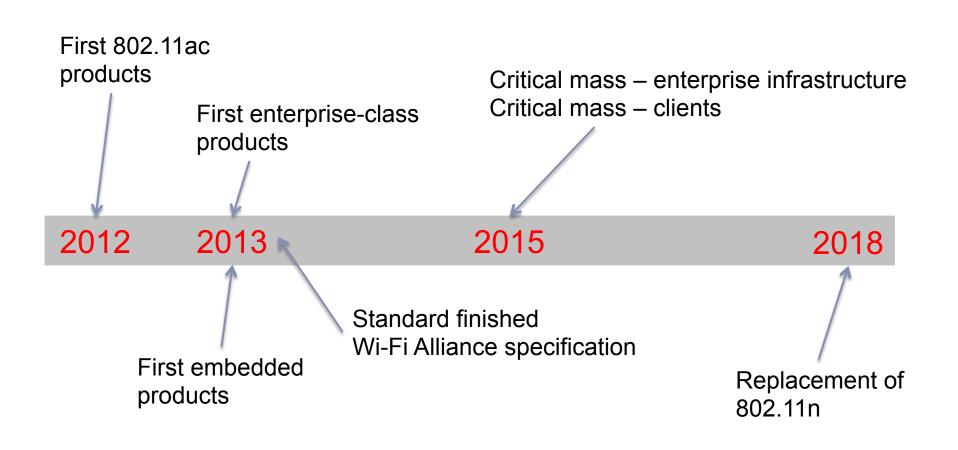
- Relatively uncrowded today...
- But tomorrow?

80- and 80x2/160-MHz. Channels

- Range, rate vs. range; effective throughput
- Increasing interference?
- Re-farming current channel plans



Evolution


- 802.11n backwards-compatible performance
- Vendor coexistence/migration strategies
- Varying quality of PHY and MAC implementations

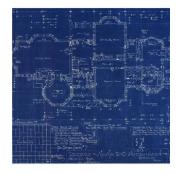
Scalability: Networks (of any form) Only Grow...

802.11ac Adoption Timeline

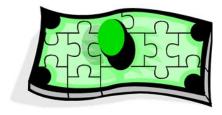
What Should the Enterprise Do Now?

CERTIFIED

Coexistence/migration planning with vendor


Wired network - audit

Non-disruptive, gradual upgrade strategy



Continue to deploy 802.11n

Begin the operations planning process

Budgetary analysis

Conclusions (for now...)

- 802.11ac will replace 802.11n but not for many years
- 802.11n projects should continue to be evaluated (and deployed) based on current ROI
- Talk with your vendor about coexistence/ migration plans
- And remember: there's more to successful WLAN deployments than radios!

Questions

For more information contact Aruba Networks: info@arubanetworks.com Farpoint Group: craig@farpointgroup.com