AOS-CX 10.09 Ingress policy support for sub interfaces

Steve Bartlett

Technical Marketing Engineer CX Switching 6300,6400,8360 switch platforms

Agenda

1 Ingress policy support on specific platforms for sub interfaces
2 Ingress policy support on specific platform with PBR
2 2of2

Ingress policy support for sub interfaces

6300,6400,8360 switch platforms

Sub-interfaces summary

Overview – introduced in 10.08 but without policy support for sub-interfaces

- A sub-interface (also called child-interface) is a virtual interface created by dividing one parent interface (physical or LAG) into multiple logical interfaces that are tagged using different VLAN-IDs.
- •Sub-interfaces use the parent physical interface for sending and receiving IP traffic.
- ■The feature is related to IP transport and not to Ethernet transport: consequently, sub-interfaces are available only for L3 interfaces. No sub-interface support for L2 interface.
- •Multiple sub-interfaces (or child interfaces) can now be created below one parent interface.
- ■Parent interface can be a regular physical L3 interface including a split L3 port or a L3 LAG

ROP (L3 port)

```
interface 1/1/2
no shutdown
interface 1/1/2.1
interface 1/1/2.2
interface 1/1/2.7
interface 1/1/2.9
interface 1/1/2.10
interface 1/1/2.11
interface 1/1/2.12
interface 1/1/2.13
interface 1/1/2.14
interface 1/1/2.15
interface 1/1/2.15
```

Split L3 Port

```
interface 1/1/35
    split
interface 1/1/35:1
    no shutdown
interface 1/1/35:1.1
interface 1/1/35:1.2
interface 1/1/35:2
    no shutdown
interface 1/1/35:2.1
interface 1/1/35:2.2
interface 1/1/35:2.3
interface 1/1/35:2.4
interface 1/1/35:2.5
```

L3 LAG

```
interface lag 1
interface lag1.1
interface lag1.5
interface lag1.10
interface lag1.11
interface lag1.12
interface lag1.13
interface lag1.14
interface lag1.20
```

Policy Support inbound for sub-interfaces

Overview

- Policy support for inbound sub interfaces is now supported in 10-09
- Policy can only be applied 'inbound' on an interface no egress policy support
- Application of policy must adhere to existing feature functional requirements of sub interfaces, example
 L3 only for sub interfaces on standard interfaces & L3 LAG. L2 sub-interfaces are not supported
 - sub-interfaces are referenced as a 'child' interface
 - the sub-interface parent must be up/routing
 - cannot configure IP addresses on parent
 - Parent must be 'routing' (not layer 2) and in the 'no shut' state
- Policy follows existing process of a 'Classifier' tied to 'Policy', as used for policy application with interfaces, and this leveraged for sub-interface policy support
- Policy support includes IPv4,IPv6 and mac classifying and policing within VLAN

Policy Support inbound for sub-interfaces

Overview continued

Classifier

- A classifier policy allows an administrator to define sets of rules based on network traffic addressing or other content, and use these rules to match and restrict or alter the traffic passage through the switch by applying to a policy
- There are three type of rules for traffic classes , MAC, IPv4 & IPv6, which are focussed on each frame/packet characteristics

Policy

- Choosing the rule criteria is called classification and one rule or list of rules is called a policy which can leverage a single or multiple 'actions' matched by the traffic class
- A policy contains one or more entries listed based on priority by sequence number
- Policy actions are broadly classified as following:
 - Remark
 - Police actions
 - Other actions

Policy examples: Remark, Police, Drop, Mirror and other actions

Policy examples: Remark, Police, Drop, Mirror and other actions

Configuration summary example

class ip remark traffic 10 match any 10.1.1.0/255.255.255.0 any Configure 'class' match class ip traffic2 10 match any 192.168.1.0/255.255.255.0 192.168.2.0/255.255.255.0 20 match ah 192.168.3.250 any policy subint-policy1 Create a policy and attach 'classifiers' 10 class ip remark traffic action dscp AF41 action cir kbps 1000000 cbs 500000 exceed drop 20 class ip traffic2 action dscp CS2 interface 1/3/48.10 no shutdown apply policy subint-policy1 in Apply policy to sub-interface with 'apply' command ip address 172.16.31.1/31 ip ospf 1 area 0.0.0.0 no ip ospf passive ip ospf network point-to-point

encapsulation dot1q 10

exit

Configuration verification -1

```
6405-BLDG03# sh policy subint-policy1
                                                                                              - `sh policy [policy-name]'
          Name
          Additional Policy Parameters
 Sequence Comment
          Class Type
                    action
           subint-policy1
       10
           remark traffic ipv4
                    dscp AF41
                    cir kbps 1000000
                    cbs 500000
                    exceed drop
        20
           traffic2 ipv4
                    dscp CS2
        30
           icmp-deny ipv4
                    drop
```

Configuration verification- 2

```
6405-BLDG03# sh running-config interface 1/3/48.10
interface 1/3/48.10
no shutdown
apply policy subint-policy1 routed-in
ip address 172.16.31.1/31
ip ospf 1 area 0.0.0.0
no ip ospf passive
ip ospf network point-to-point
encapsulation dot1q 10
exit
```

```
Statistics for Policy subint-policy1

VRF default interface 1/3/48.10 (routed-in):

Matched Packets Configuration

10 class ip remark traffic action dscp AF41 action cir kbps 1000000 cbs 500000 exceed drop [ 0 kbps conform ]

- 10 match any 10.1.1.0/255.255.255.0 any

20 class ip traffic2 action dscp CS2

- 10 match any 192.168.1.0/255.255.255.0 192.168.2.0/255.255.255.0 - 20 match ah 192.168.3.250 any

30 class ip icmp-deny action drop

0 10 match icmp any 172.16.31.1 count
```

'sh policy hitcounts [policy-name]'

Configuration verififcation-3

Output is all switch policy configuration

```
6405-BLDG03# sh policy configuration
```

Output is specific interface policy

```
6405-BLDG03# sh policy interface 1/3/48.10
```

Output is policy commands applied on the switch (not 'class' configured definitions)

```
6405-BLDG03# sh policy commands

policy subint-policy1

10 class ip remark_traffic action dscp AF41 action cir kbps 1000000 cbs 500000 exceed drop

20 class ip traffic2 action dscp CS2

30 class ip icmp-deny action drop

interface 1/3/48.10

apply policy subint-policy1 routed-in
```

Output is vsx-peer node configuration and commands

```
6405-BLDG03# sh policy vsx-peer
commands Format output as CLI commands
configuration Display user-specified configuration
```


Policy configuration notes

Detail

- Multiple 'classifiers' can be tied to a policy, classifiers can have multiple 'classifications'
- A policy cannot be applied to the 'parent' interface of one or more sub-interfaces. This also means a sub-interface cannot be applied to an interface if there is a policy applied (at parent interface)
- If a policy contains any in class entry with the 'count' keyword and is applied to multiple sub-interfaces in the same direction:
 - The statistics will be aggregated
 - For 'routed-in' direction the statistics will aggregated only for sub-interfaces in the same vrf
 - Separate stats for different sub-interfaces can be obtained using another policy
 - Per-interface keyword is not available in the sub-interface context
- Sub-interface applications share lookups with ingress and egress VLANs
- no policy [policy name] removes the policy from the global configuration (even if applied within an interface sub context)

Policy configuration notes -2

Detail -2

Note the usage of 'in' and routed-in cli syntax when applying policy to an interface, example with policy 'subint-policy1'

```
apply policy subint-policy1 routed-in
or
apply policy subint-policy1 in
```

	MAC Class(es)	PBR action
Ingress sub-interface policy 'in'	yes	no
routed-ingress sub-interface policy 'routed-in'	no	Yes

 The direction option 'in' & 'routed-in' provides the option for administrators to decide between mac class policy and the PBR option for routed traffic. For routed traffic and for the option of using the PBR feature, use the routed-in option

Thank you

steve.bartlett@hpe.com