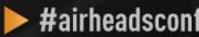
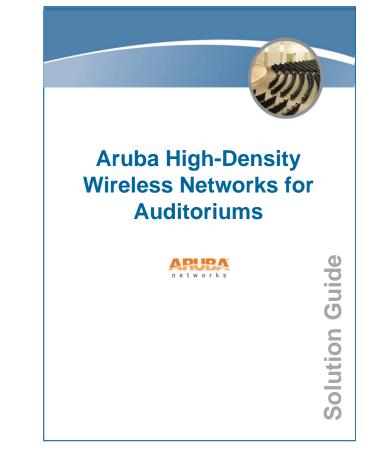
HIGH DENSITY WIRELESS NETWORKS VALIDATED REFERENCE DESIGN (VRD)

Chuck Lukaszewski Senior Director, Professional Services chuck@arubanetworks.com



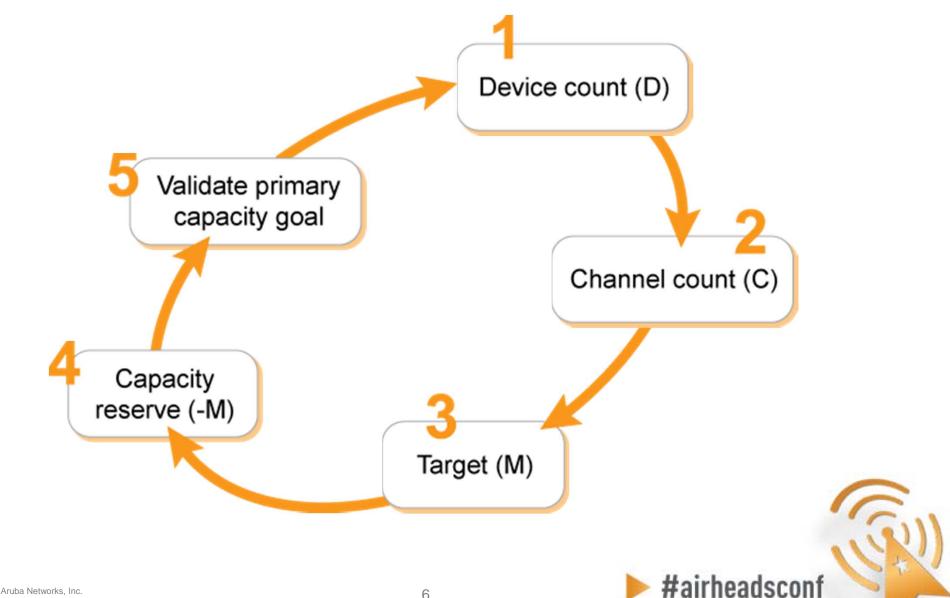
- Capacity Planning for HD WLANs
- RF Design for HD WLANs
- Optimizing and Configuring ArubaOS
- Case Study #1 Marina Bay Sands Singapore
- Case Study #2 Turner Field


Capacity Planning for High-Density WLANs

Aruba Validated Reference Designs

- Aruba is the thought leader in our industry. We produce a library of Validated Reference Designs
- The High Density (HD) WLANs VRD covers ultra high capacity spaces such as auditoriums, arenas, stadiums and convention centers
- The recommendations have been field proven at dozens of customers
- VRDs are free to download from Aruba Design Guides web page:

http://www.arubanetworks.com/VRD

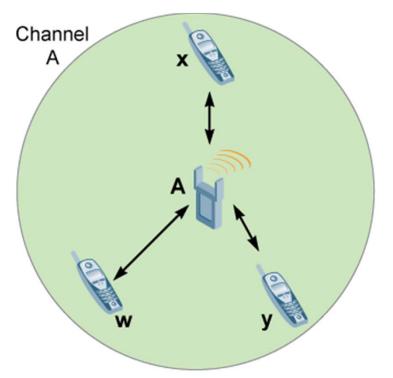


High Density Area Challenges

- Uncontrolled mix of device types, operating systems, driver levels, and radio types
- Multiple devices per person up to three
- Per-user bandwidth needs can easily exceed what is allowed by WiFi and physics
- Simultaneous data plane spikes during roomwide events (slide advance, polling)
- Inrush/outrush demand increases load on network control plane, address space, etc.
- Power save behavior also loads control plane
- Most devices limited to 1x1:1 HT20 operation

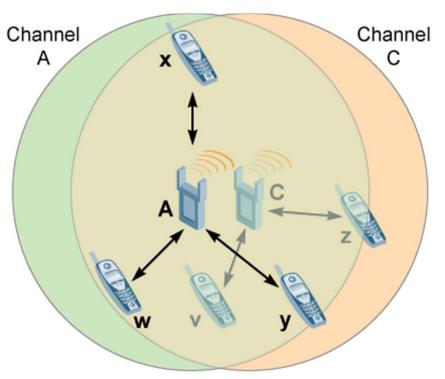
HD WLAN Capacity Planning Methodology

Step 1: Determine Device Count


• Choosing a high-density WLAN capacity goal:

- Total # of devices = seats X devices per seat
 - A user may have a laptop & Wi-Fi smartphone
 - Each MAC address uses airtime, IP address, etc.
- Minimum bandwidth per device driven by mix of data, voice and video applications used
- Common examples of a complete capacity goal:
 - Classroom has 30 students each needs 2 Mbps
 - Auditorium holds 500 people w/laptop at 350 Kbps for data and a voice handset at 128 Kbps
 - Trading floor of 800 people with 512 Kbps each
- Try to plan for future capacity needs in the design
- Number of seats may remain fixed, but number of devices may continue to proliferate

🕨 #airheadscon



Step 2: Determine Channel Count Overlapping vs. Stacking

If one channel provides x Mbps capacity...

Single Channel

Two APs covering the same area on non-overlapping channels provide 2x Mbps capacity.

Overlapping Channels

HD WLANs should always use the 5-GHz band for primary client service Client chipset/driver also impact supported channels

8

Step 2: Determine Channel Count Channels Allowed by National Regulatory Agency

- Channel bonding (HT40) reduces capacity in HD WLANs, so 20MHz channels should always be used in both bands
- Available channel count varies from country to country
- DFS channels have usability restrictions and may not be a good choice

									_	
	Channel #	Frequency (MHz)	USA	Europe	Japan	Singapore	China	Israel	Korea	Brazil
	36	5180	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
	40	5200	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
	44	5220	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
	48	5240	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
DFS Channels	52	5260	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
	56	5280	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
	60	5300	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
	64	5320	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
	100	5500	Yes	Yes	Yes	No	No	No	Yes	Yes
	104	5520	Yes	Yes	Yes	No	No	No	Yes	Yes
	108	5540	Yes	Yes	Yes	No	No	No	Yes	Yes
	112	5560	Yes	Yes	Yes	No	No	No	Yes	Yes
	116	5580	Yes	Yes	Yes	No	No	No	Yes	Yes
	120	5600	No	No	Yes	No	No	No	Yes	No
	124	5620	No	No	Yes	No	No	No	Yes	No
	128	5640	No	No	Yes	No	No	No	Yes	No
	132	5660	No	No	Yes	No	No	No	No	No
	136	5680	Yes	Yes	Yes	No	No	No	No	Yes
	140	5700	Yes	Yes	Yes	No	No	No	No	Yes
	149	5745	Yes	No	No	Yes	Yes	No	Yes	Yes
	153	5765	Yes	No	No	Yes	Yes	No	Yes	Yes
	157	5785	Yes	No	No	Yes	Yes	No	Yes	Yes
	161	5805	Yes	No	No	Yes	Yes	No	Yes	Yes
	165	5825	Yes	No	No	Yes	Yes	No	Yes	Yes
	Total without DFS		9	4	4	9	5	4	9	9
	Total with DFS		20	15	19	13	5	8	21	20

Step 2: Determine Channel Count 20 MHz vs. 40 MHz Channels

High-throughput 40-MHz (HT40) channels

- Reduces number of radio channels by bonding them together to achieve higher throughput
- Reduced max. number of client devices supported
- HT40 channels not used on the 2.4-GHz band
- Main benefit ability to burst at the max. PHY
- **But**, auditoriums must support so many users in a single room that every possible channel is needed
 - Trade-off: Reduce max. burst rate in exchange for a greater total user capacity
- Therefore, most HD WLANs including auditoriums should use 20-MHz channel widths, also known as HT20

Step 2: Determine Channel Count To DFS or Not to DFS?

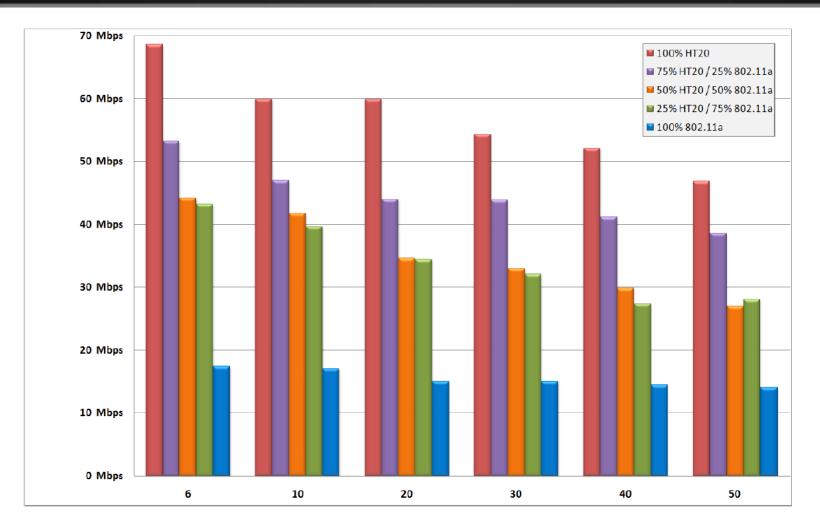
- The DFS 5-GHz band, with up to twenty 20-MHz channels, can achieve high performance in a 500seat auditorium
- Without DFS, the goal can be achieved but with oversubscribed radios & lower per-client throughput

So why wouldn't everyone use DFS?

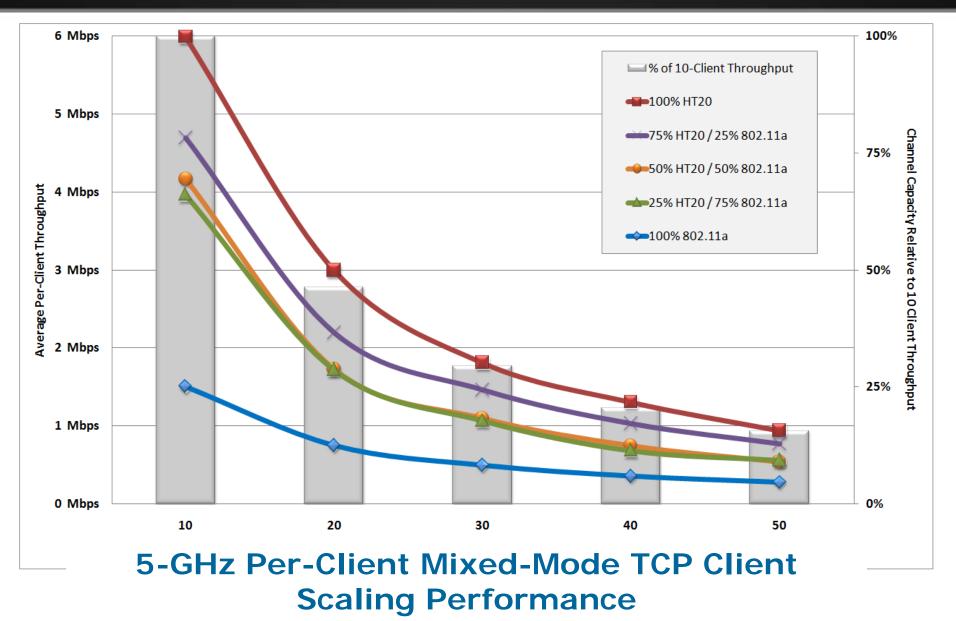
 Three significant exceptions could adversely affect HD WLAN performance with DFS enabled:

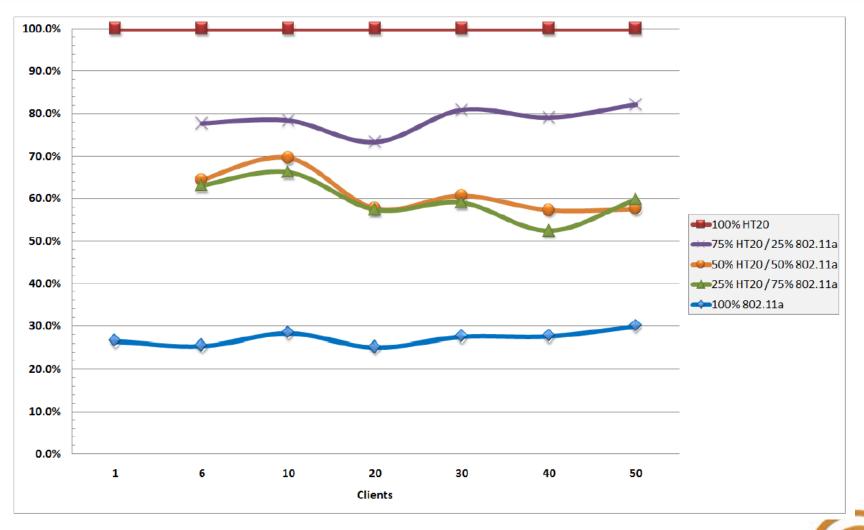
- Proximity to radar sources in the 5250-MHz to 5725-MHz band
- Lack of DFS support on critical client devices
- The Receive Sensitivity Tuning-Based Channel Reuse feature of ArubaOS is needed

#airheadscor

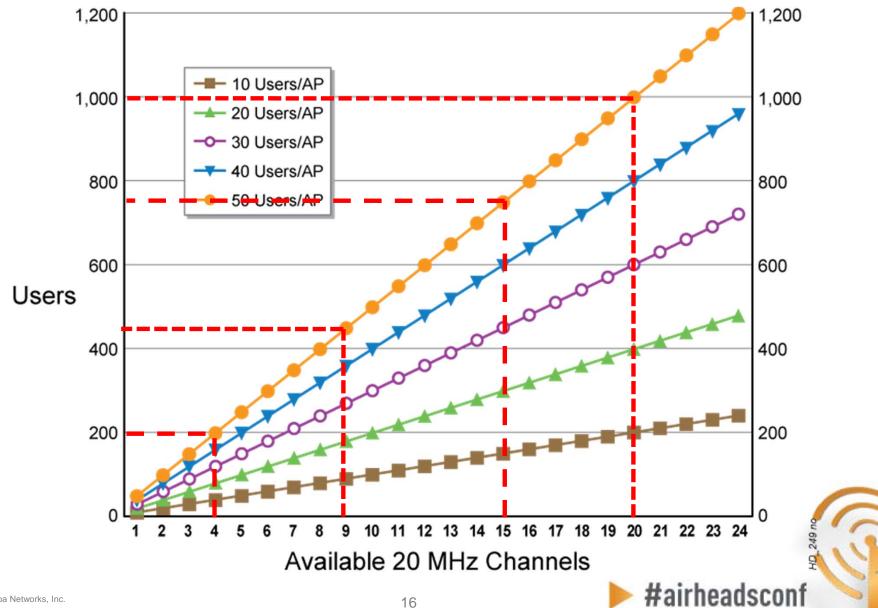

Step 3: Choose Concurrent User Target Aruba High Density Testbed

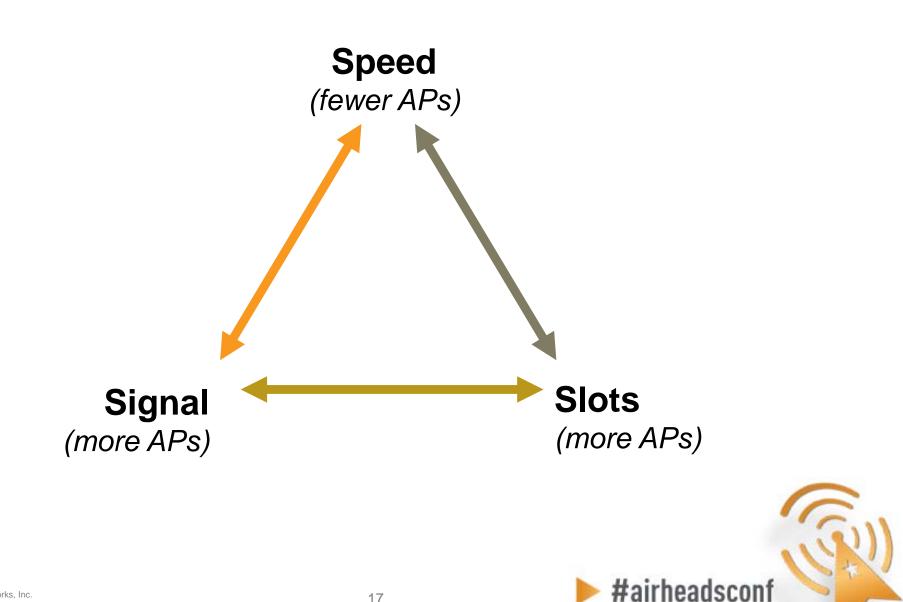
- Environment Open air test
- **Clients** 50 late-model laptops with mix of manufacturers, OS and wireless adapter/driver
- Goal Mimic the uncontrolled, heterogeneous environment that exists in most auditoriums
- Procedure Run scaling tests from 1 to 50 clients and measure how throughput changes with load


Step 3: Choose Concurrent User Target Measured 20MHz Channel Capacity


5-GHz Aggregate Mixed-Mode TCP Client Scaling Performance

Step 3: Choose Concurrent User Target Tradeoffs Between Bandwidth and User Count

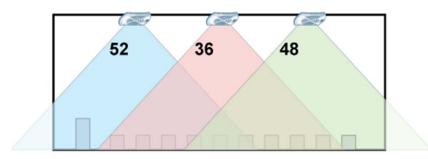

Step 3: Choose Concurrent User Target Relative Performance of Channel Mixes


5-GHz Per-Client Mixed-Mode TCP Client Scaling Performance

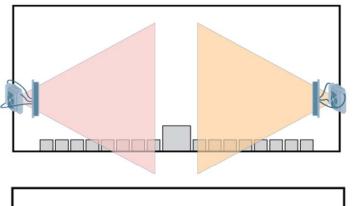
#airheadsconf

Step 4: Determine Total Capacity

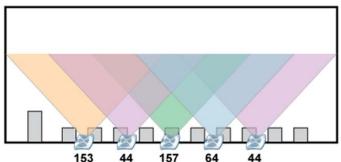
Channel Reuse Revisited Choosing the Lesser Evil


Step 5: Validate Capacity Goal

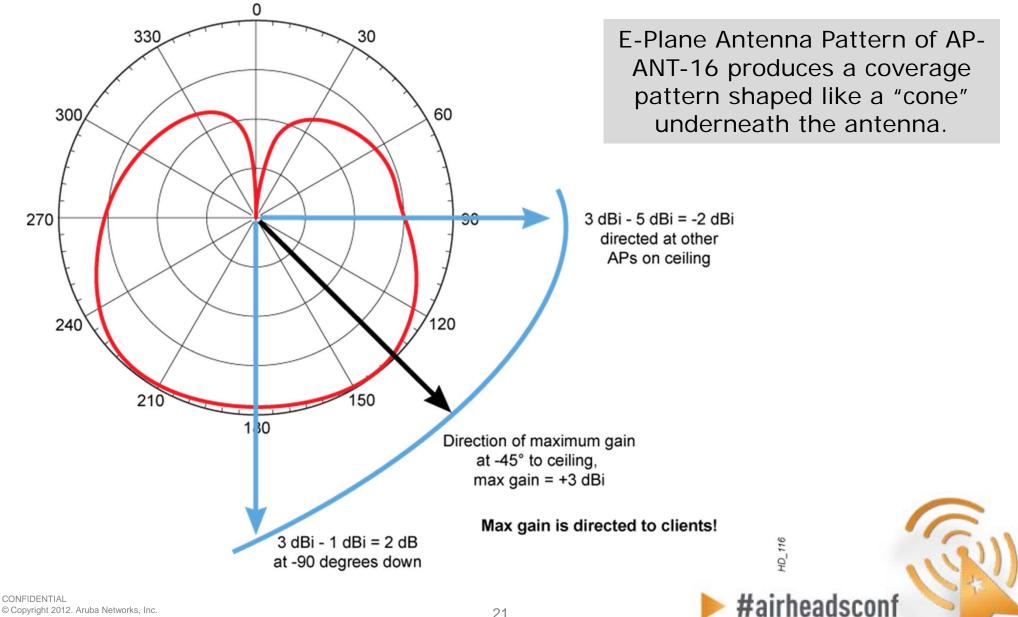
- Validate whether the entire HD coverage area will meet the capacity goal you chose in Step #1.
- It is common for the wireless architect to have to follow an iterative process and compromise between channel count, radio loading and minimum per-client throughput.
- If the capacity prediction in Step #4 falls short of the capacity goal, repeat the first four steps until you achieve the best balance to achieve your goal.
- For large auditoriums over 500 seats, you should be prepared to accept a per-client throughput of 500 Kbps or less, assuming a 50/50 mix of .11n and .11a stations and nine usable channels.

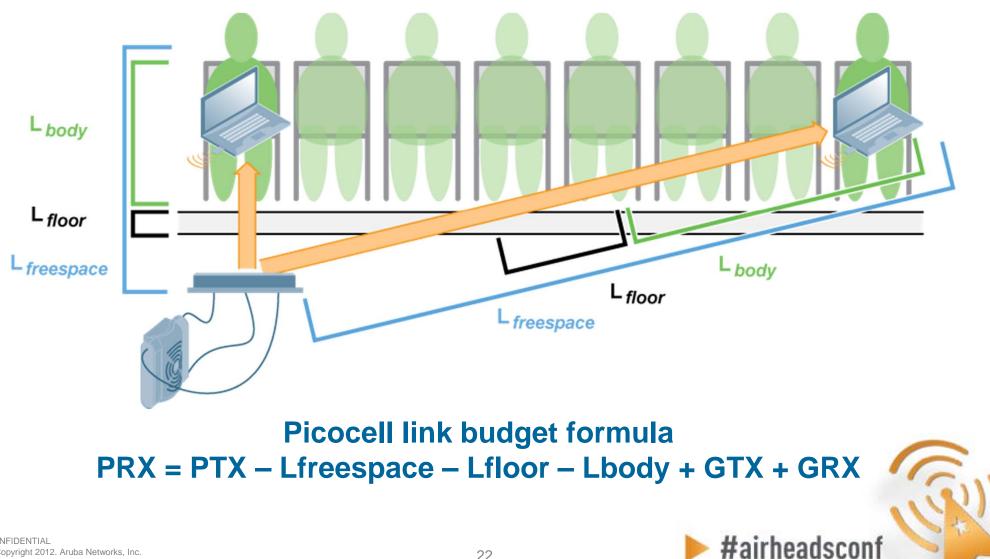


RF Design for High-Density WLANs


Coverage Strategies for Auditoriums

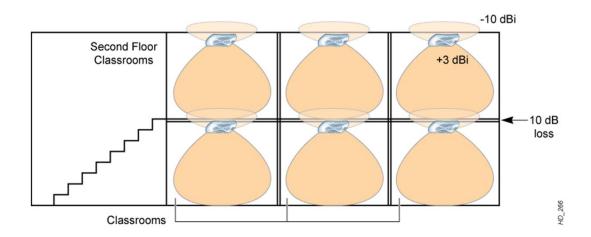
Overhead coverage is a good choice when uniform signal is desired everywhere in the auditorium


Wall installations are most often seen where ceiling or under-floor access is not possible or too expensive.

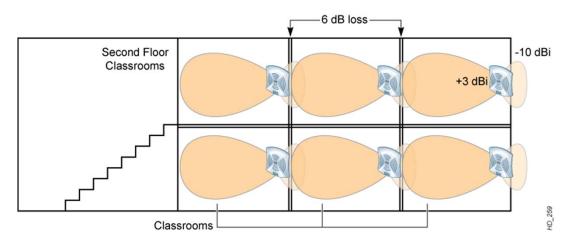

By far the best coverage strategy for auditoriums is mounting under, in, or just above the floor.

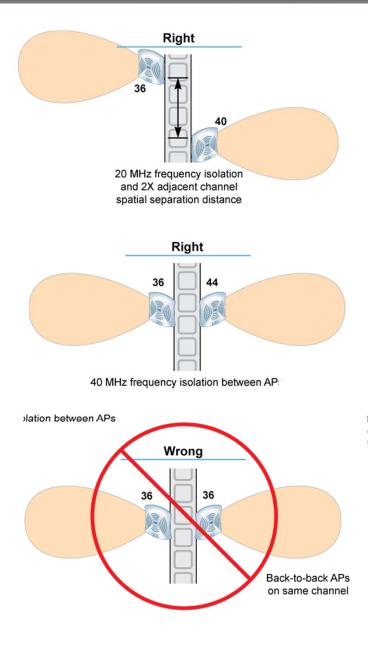
Overhead Coverage — RF Radio Patterns

Picocell Coverage - Link Budget Analysis



AP Coverage Strategies – Pros and Cons


Strategy	PROs	CONs	
Overhead Coverage	 Can be concealed inside ceiling. Mounted above eye level. Uniform signal, APs evenly spaced. Clear line-of-sight to devices. Minimal human-body attenuation. Better CCI/ACI control. 	 Channel reuse not possible. Difficult to pull cable. 	
Side Coverage	 Easy to install and pulling cable. Columns can be used to deliberately create RF shadows. 	 Channel reuse not possible. Inconsistent signal levels. Increased body attenuation. Harder to control CCI/ACI. Signal bleed outside area. 	
Floor Coverage	 Channel reuse possible. Higher AP densities can be achieved. APs can be easily concealed. More uniform signal in the room. Clear line-of-sight to devices. Minimal human-body attenuation. Better CCI/ACI control. 	 Access underneath the auditorium. Availability of cable pathways beneath the floor. 	



Adjacent HD WLANs

AP-105 Integrated Directional Antenna to Isolate Adjacent HD WLANs

Optimizing & Configuring ArubaOS for High-Density WLANs

#airheadscon

Essential Aruba Features for HD WLANs

Optimal	Optimal	Optimal	Optimal
Channel	Client	Power	Airtime
Distribution	Distribution	Control	Management
 Even distribution of channels w/ARM Enable load-aware, voice-aware, video- aware scanning Repurpose unneeded 2.4-GHz radios with Mode- Aware ARM or static assignment Enable DFS channels if used 	 Shift all 5-GHz capable devices off 2.4-GHz band w/Band Steering Even distribution of clients w/Spectrum Load Balancing 	 Restrict maximum allowable EIRP w/ARM to minimize cell overlap Control power on clients w/802.11h TPC Minimize CCI and ACI w/Receive Sensitivity Tuning Channel Reuse 	 Ensure equal access to medium w/Airtime Fairness feature Limit "chatty" protocols Enable Multicast Rate Optimization and IGMP Snooping Enable Dynamic Multicast Opt. for video Eliminate low legacy rates by reducing rate adaptation

Optimal Channel Distribution

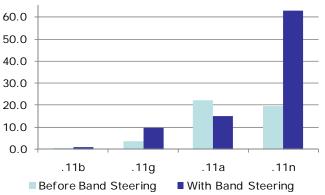
- Optimize the distribution of RF spectrum to APs and clients to make best use of scarce spectrum
 - Use as many allowed RF channels as possible and ensure they are properly distributed

ARM Channel Selection

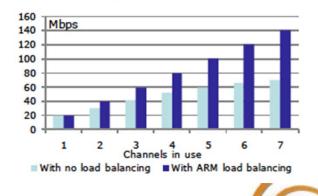
- Aruba ARM uses distributed channel reuse mgmt. algorithm
- This iterative process converges quickly on optimum channel plan for the entire network

• Mode-Aware ARM

- Dynamically shifts surplus radios in the same RF neighborhood to become air monitors
- Mode-Aware ARM is disabled by default
- APs cannot be individually configured for Mode-Aware


Optimal Client Distribution

- Employ ARM to optimally distribute clients between frequency bands
- Band Steering:
 - Enterprise WLANs have both 2.4-GHz & 5-GHz bands. But, most clients connect at 2.4 GHz, even if it is the most crowded.
 - Solution HD WLAN "steers" 5-GHz clients to that band reducing contention for 2.4-GHz band.


• Spectrum Load Balancing:

- Spectrum load balancing moves clients away from congested APs or RF channels into those with available capacity.
- The number of clients on a given channel, rather than per-AP is the dominant predictor of data capacity.

Effect of band steering on data throughput

Figure 32 Data Capacity Improvement with ARM Load Balancing

#airheadscor

Optimal Airtime Management

Ensuring equal access with Airtime Fairness

 Maintain application performance in high-density areas with scheduled airtime fairness

Limiting "Chatty" protocols

- Use ACLs and controller settings to restrict traffic

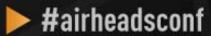
Enabling Multicast Rate Optimization

- ARM can reduce medium multicast traffic time

Enabling Dynamic Multicast Optimization for video

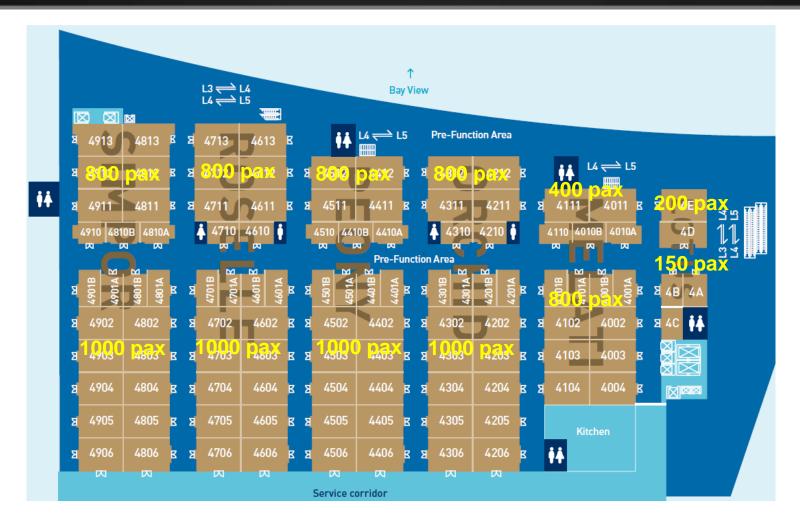
 Deliver multicast frames with unicast headers, improving reliability over the air, QoS, and channel utilization

Limiting supported data rates:


- 48 and 54 Mbps for 802.11a/g
- 6.5 and 11 Mbps for 802.11b

Case Study #1

Marina Bay Sands Singapore & Young Presidents Asia Conference



Marina Bay Sands Overview

- Huge convention center located in Singapore
- 5 levels of convention halls
- Grand ballroom on level 5
- Can be over 5000 users per level
- No control over client devices—can be any type of device
- Distribution of 2.4 GHz and 5.0 GHz clients changes from one event to another

Marina Bay Sands Level 4 possible capacity

Over 8000 total users possible

Marina Bay Sands Level 4 Single Room

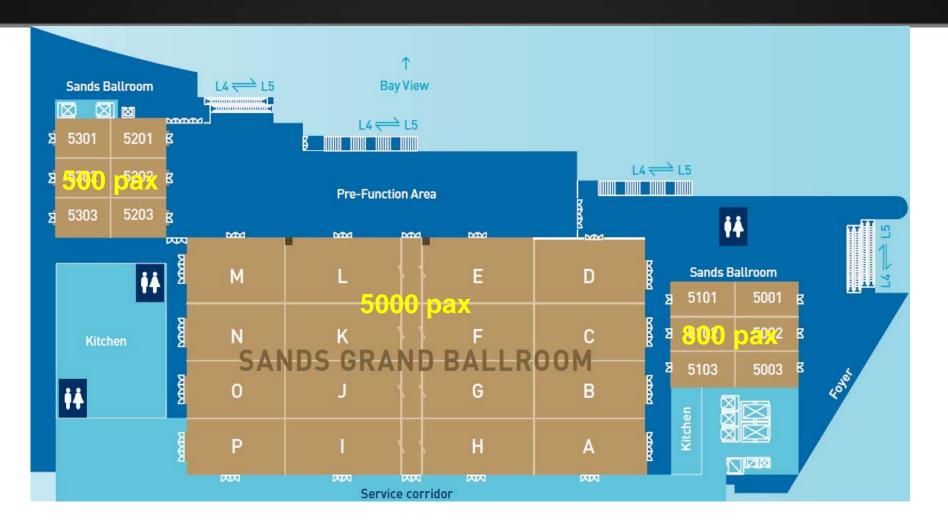
MBS Technical Requirements

- Dynamic configuration required that can be adapted easily to conference events
- SSID's offered and areas of coverage changes from one event to the next
- Might be only 1 AP needed for one event, while for large events all AP's must be enabled for coverage and to support expected client density
- Conference goers may bring in their own AP's that interfere with the MBS service

MBS Design - Level 4

- Series of rooms that are largely self contained user spaces
- Channel reuse within each room is not possible
- 2.4 GHz channels are statically set to ensure 3 non-overlapping channels per room
- 2.4 GHz transmit power is statically set to 15 dBm
- 5.0 GHz channels and transmit power are automatically configured with ARM—ARM has configured all AP's to use max power
- Signal overlap from one room to the next is minimal
- Interference is minimal
- Ceiling placement gives Line of Sight (LOS) to clients and provide strong coverage
- SNR is strong within each room giving excellent performance

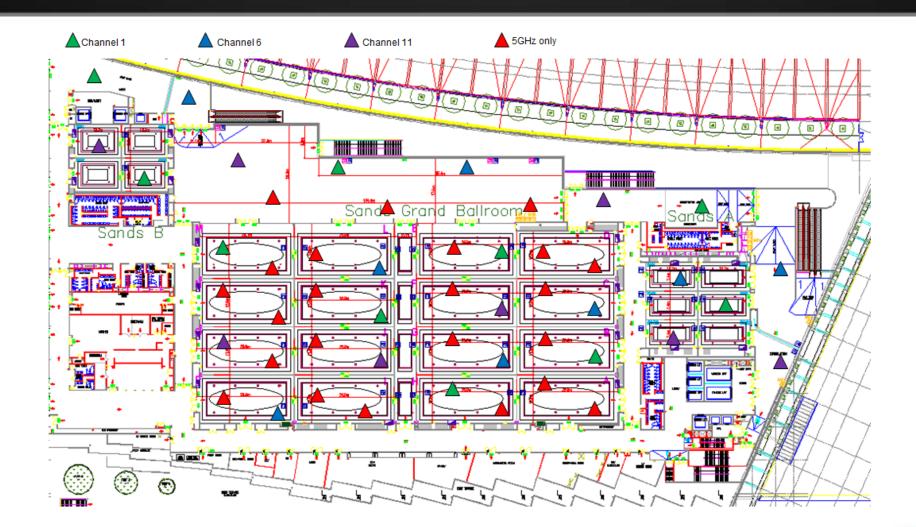
MBS RF Plan – Level 4



MBS Design - Level 5

- Grand ballroom is on level 5
- Client density requires more AP's while vast open area mean AP's hear each other quite well
- To handle user count channel reuse is mandatory
- 2.4 GHz channels are statically configured in grand ballroom and pre-function foyer to ensure adjacent AP's are on different channels
- Interference from Audio-Visual system on 2.4 GHz is significant in Grand ballroom
- 5.0 GHz channels and transmit power are configured via ARM
- Ceiling placement gives Line of Sight (LOS) to clients and provide strong coverage
- SNR is strong within each room giving excellent performance

MBS Level 5 - Possible User Capacity

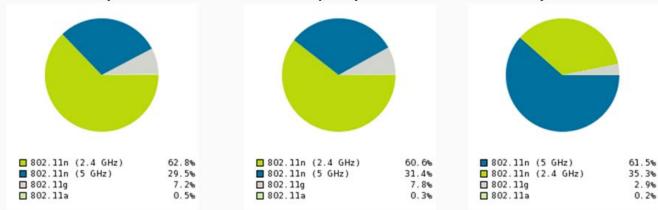


Over 6000 total users possible

CONFIDENTIAL © Copyright 2012. Aruba Networks, Inc. All rights reserved

MBS Level 5 – RF Design

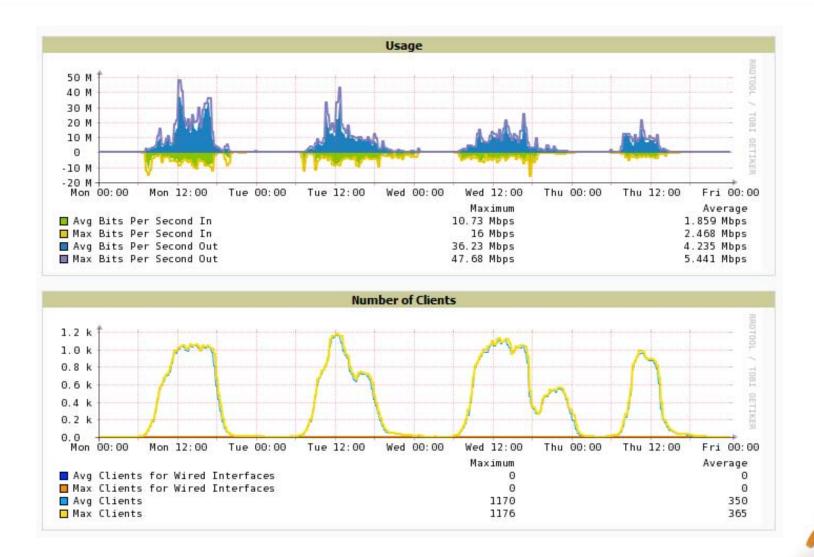
AP's hear each other quite well in Grand ballroom making channel reuse difficult


MBS in Action - YPO Asia Event AirWave Connection Report

Session Data by Connection Mode

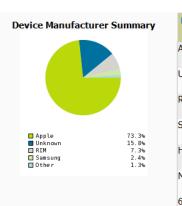
Lt.

Connection Mode	Number of Clients	% of Clients	Amount of Time	% of Time	MB Used	% of MB Used	Average Signal Quality	Number of Sessions
802.11n (2.4 GHz)	1925	62.83%	427 days 4 hrs 30 mins	60.57%	32712.77	35.31%	21.26	48828
802.11n (5 GHz)	903	29.47%	221 days 7 hrs 30 mins	31.38%	57002.04	61.53%	25.02	20143
802.11g	221	7.21%	54 days 20 hrs 28 mins	7.78%	2728.33	2.95%	24.87	4651
802.11a	15	0.49%	1 day 23 hrs 23 mins	0.28%	<mark>192.3</mark> 3	0.21%	23.94	180
4 Connection Modes		100.00%	705 days 7 hrs 53 mins	100.00%	-	100.00%		73802


Number of Clients by Connection Mode Amount of Time Spent by Connection Mode MB Used by Connection Mode

CONFIDENTIAL © Copyright 2012. Aruba Networks, Inc. All rights reserved

MBS in Action - YPO Asia Event AirWave User Count & Bandwidth Report



MBS in Action - YPO Asia Event AirWave Device Type & Manufacturer Report

Apple iPhone ○ Other Apple iPad ○ Windows 7 ○ Apple Mac	47.89 21.29 20.69 5.89 4.59

Device Type Summary

Device Type	Count 🗸	% of Tota
Apple iPhone	1098	47.82%
Apple iPad	474	20.64%
Windows 7	133	5.79%
Apple Mac	104	4.53%
RIM BlackBerry	81	3.53%
RIM	60	2.61%
Unknown	45	1.96%
Android	42	1.83%
Windows XP	25	1.09%
Apple	25	1.09%
RIM BlackBerry 9900	22	0.96%
RIM BlackBerry 9700	18	0.78%
Windows Vista	13	0.57%
RIM BlackBerry 9800	13	0.57%
RIM BlackBerry 9780	12	0.52%
Samsung GT-N7000	11	0. <mark>4</mark> 8%
Samsung GT-I9100	10	0.44%

Int → % of Total
3 73.30%
15.81%
7.27%
2.35%
0.83%
0.44%
5 100.00%

MBS in Action - YPO Asia Event AirWave Client Session Summary

Client Session Summary

Number of sessions:	73802
Number of unique clients:	2296
Number of guest users:	0
Number of unique APs:	98
Average session duration:	13 mins
Total traffic (MB):	92635.47
Average traffic per session (MB):	1.26
Average traffic per client (MB):	40.35
Average bandwidth per client (Kbps):	13.31
Average signal quality:	28.64

CONFIDENTIAL © Copyright 2012. Aruba Networks, Inc. All rights reserved

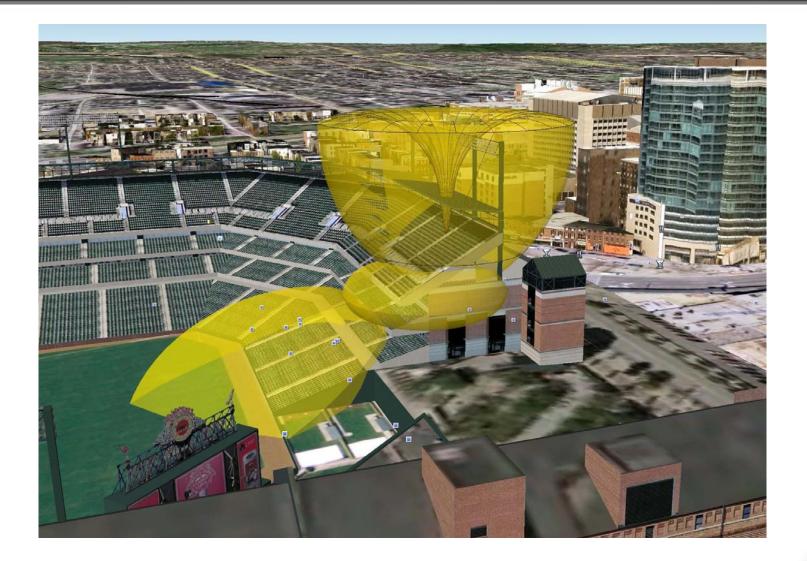
MBS in Action - YPO Asia Event AirWave Max Concurrent Client Report

Most Utilized by Maximum Number of Simultaneous Clients

Rank 🔺	AP/Device	Number of Clients	Max Simultaneous Clients	Total Data (MB)	Average Usage (Kbps)
1	MIC05-AP12	0	209	10738.58	248.58
2	MIC04-AP01	0	198	3922.18	90.79
3	MIC04-AP20	0	177	8032.21	185.93
4	MIC05-AP28	0	172	5344.77	123.72
5	MIC05-AP14	0	168	5938.36	137.46
6	MIC05-AP24	0	147	1605.28	37.16
7	MIC05-AP10	0	138	401.85	9.30
8	MIC05-AP38	0	137	224.56	5.20
9	MIC04-AP34	0	136	4583.72	106.11
10	MIC05-AP33	0	136	289.79	6.71

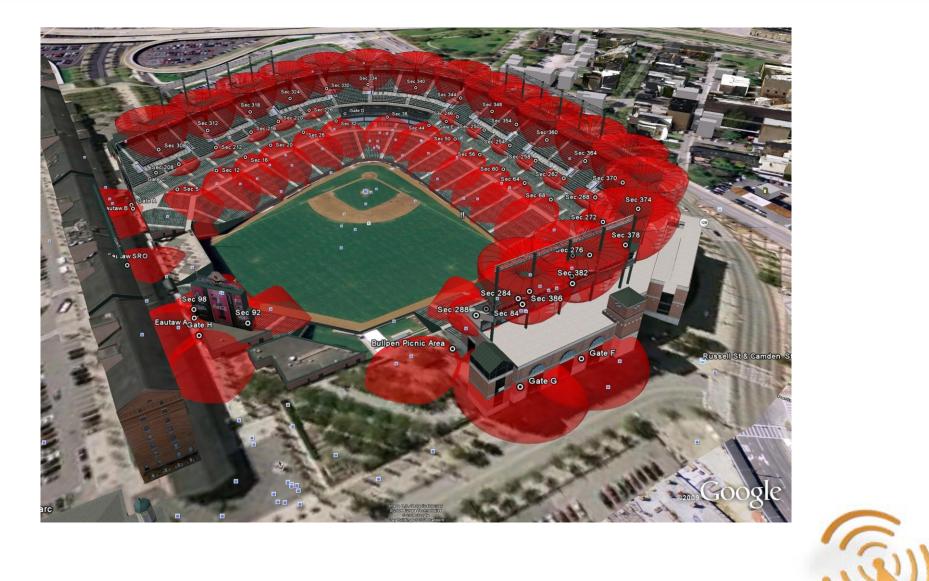
Most Utilized by Usage

Rank 🔺	AP/Device	Number of Clients	Max Simultaneous Clients	Total Data (MB)	Average Usage (Kbps)
1	MIC05-AP42	0	113	24700.90	571.78
2	MIC04-AP02	0	39	24076.36	557.32
3	MIC04-AP35	0	24	16307.60	377.49
4	MIC05-AP43	0	84	11017.67	255.04
5	MIC05-AP12	0	209	10738.58	248.58
6	MIC04-AP22	0	133	10329.32	239.10
7	MIC04-AP46	0	21	9685.50	224.20
8	MIC04-AP03	0	15	8945.79	207.08
9	MIC04-AP20	0	177	8032.21	185.93
10	MIC04-AP36	0	74	7763.23	179.70


Case Study #2 Turner Field – Atlanta

"Up and Out" RF Design

- Three interleaved "blankets" of APs to cover the lower sections, club level, and upper sections respectively:
 - Lower deck antennas are mounted under the club seats and aimed "<u>out</u>" to the field
 - Upper deck antennas are mounted underneath the floor and aimed straight "<u>up</u>" through the concrete. In the middle
 - A blanket of APs is installed in the club suites above the ceiling.
- The stadium structure itself is used to minimize interference between blankets

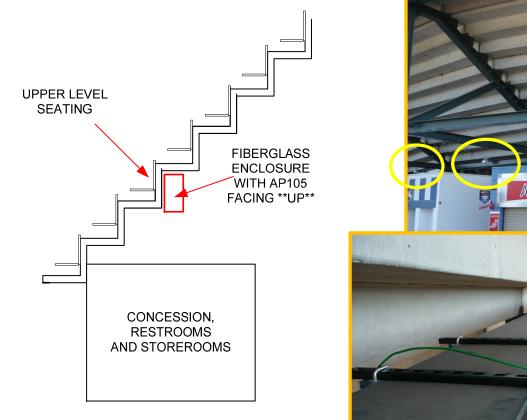


RF Design – 3 Independent RF "Blankets"

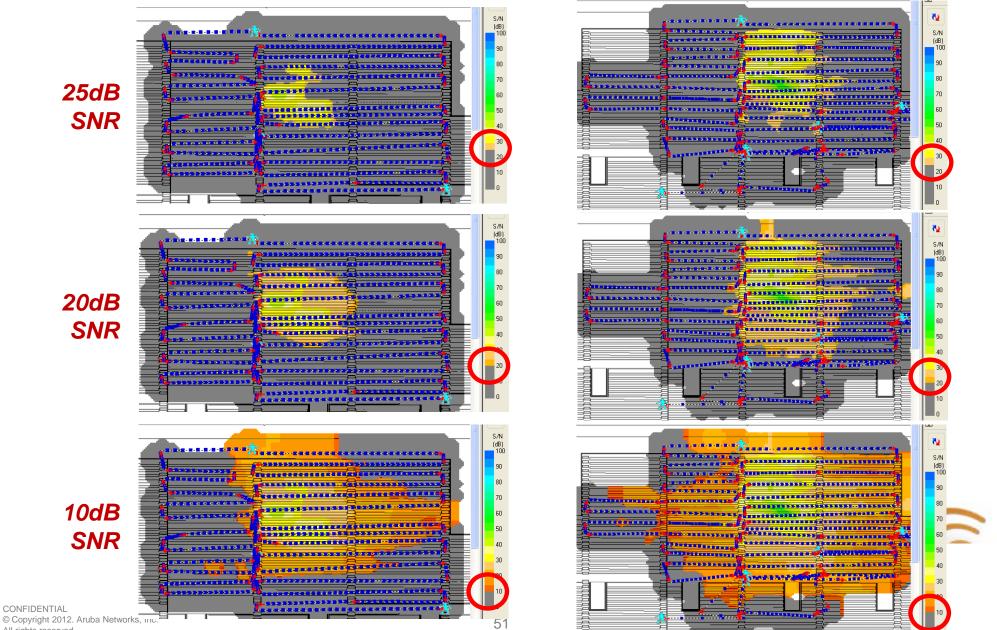
RF Design – Full Scale 3D Model

8

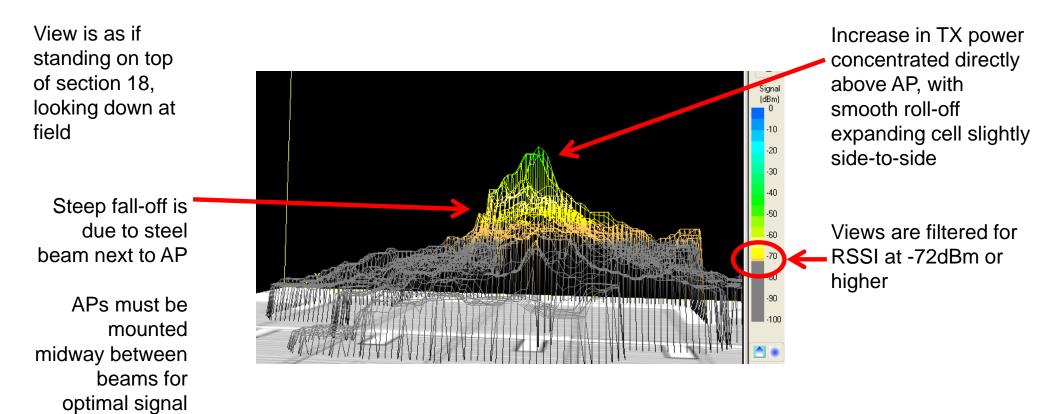
Physical Installation – Lower Blanket


APs mounted directly above the 200 sections, with 30°x30° high gain directional antennas aimed at row 10

Physical Installation – Upper Blanket


APs mounted underneath 400 sections, with dual 60°x60° directional antennas aimed to match slope of stands

CONFIDENTIAL © Copyright 2012. Aruba Networks, Inc. All rights reserved



Typical AirMagnet Survey – Ch 6 – SNR

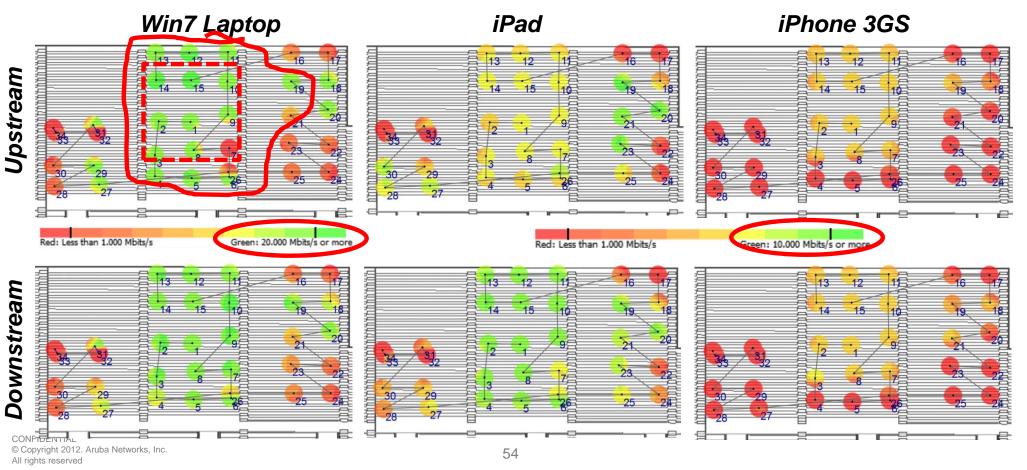
All rights reserved

Typical Picocell RF Rolloff – 3D Side View

#airheadscon

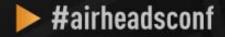
dispersal

Typical WaveDeploy Throughput Test


- WaveDeploy is a new WiFi validation tool from VeriWave
- Multiple test clients, mixand-match
 - Lightweight native agent for each OS
 - Fully automated test console
 - Able to run TCP, UDP, voice, video tests and more
- An iPad, iPhone 3GS and Windows 7 laptop were tested by Aruba

Typical WaveDeploy TCP Speed Test

- Tests were worst case (device on top of aluminum bench)
- *iOS devices use different throughput scale than laptop*
- Performance correlates well with measured RF cell size
- Downstream performance generally better than upstream



Thank You

community.arubanetworks.com

