

BGP Confederation

Aruba Switching TME

Confederation

Agenda

Overview	
Use Cases	
Details / Caveats	
Configuration	
Best Practices	
Troubleshooting	
Demo	

Overview

Definitions

Acronyms

MP-BGP	Multi-Protocol Border Gateway Protocol
 AF 	Address Family (Ex: IPv4, IPv6 or EVPN address families used in MP-BGP)
■ AS	Autonomous System : a BGP administrative domain
■ iBGP	internal BGP , refers to peering between nodes inside the same AS.
■ eBGP	external BGP, refers to peering between nodes from different AS.
BGP RR	Route-Reflector concept applies to iBGP only. RR propagates routes to RR-Clients
 RR-Clients 	Route-Reflector Clients
 AS Confederation 	A collection of autonomous systems represented and advertised as a single AS number to BGP speakers that are not members of the local BGP confederation. "AS Confederation" and "Confederation" are used interchangeably in the industry.
 AS Confederation Identifier 	An externally visible autonomous system number that identifies a BGP confederation as a whole.
 Member-AS 	An autonomous system that is contained in a given AS confederation.
 Member-AS Number 	An autonomous system number identifier visible only within a BGP confederation, and used to represent a Member-AS within that confederation. "Member-AS" and "Member-AS Number" are used interchangeably in the industry

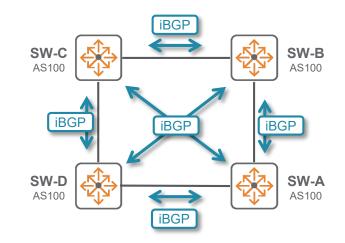
Overview

Reminder: iBGP Split Horizon Rule

- The BGP Spit Horizon Rule states that a BGP router that receives a BGP route via an iBGP peering shall not advertise that route to another iBGP Peer.
- Because of the split horizon rule, the information learnt cannot be advertised to other peers in the iBGP network. To overcome this constraint, 3 solutions are possible:
 - implementation of a full mesh routing topology. For n BGP speakers within an AS, n*(n-1)/2 unique iBGP sessions are required. Full mesh deployment does not scale when there are a large number of iBGP speakers within the Autonomous System. This method should be reserved for a very small number of iBGP nodes (preferably less or equal to 4).

2. Route Reflector

An iBGP RR advertises routes to other iBGP speakers, called route-reflector clients. No other iBGP peering is configured on the RR-client beside the one to the RRs.

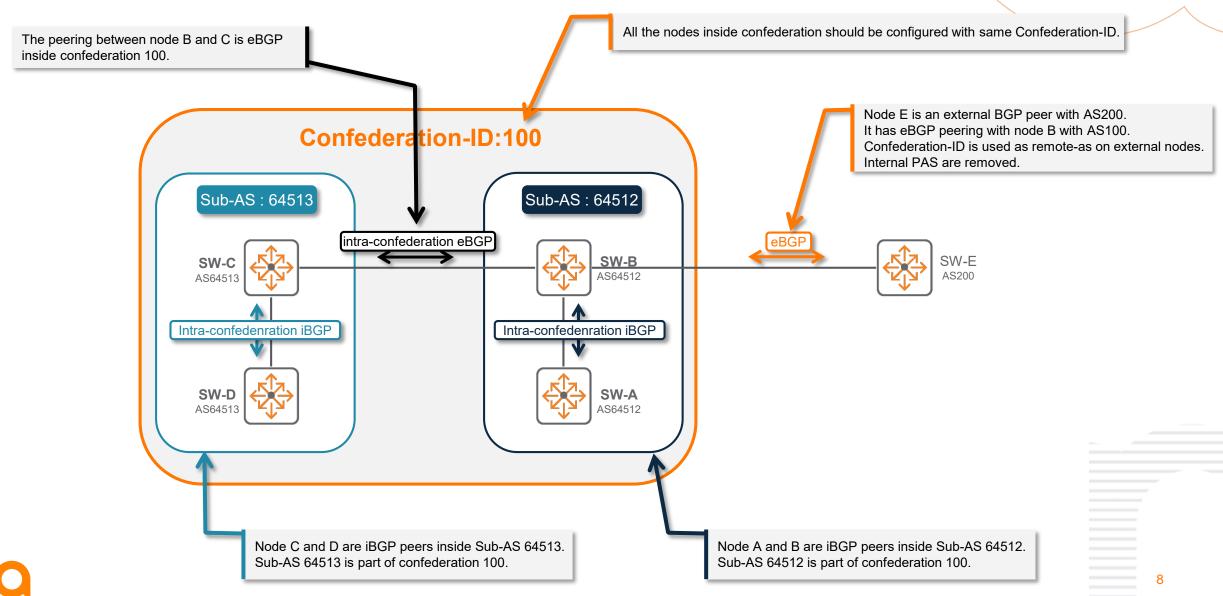

3. Confederation

New in 10.6.

Reminder

iBGP Full mesh routing topology

n*(n-1)/2 iBGP peering configuration is required. (here 6)



BGP Confederation

Overview

- BGP Confederation breaks up an Autonomous System with a very large number of BGP speakers into smaller Sub-Autonomous Systems.
- Each Sub-Autonomous System is uniquely identified within the confederation AS by a Sub-AS number also referred as Member-AS number.
- Typically, sub-AS numbers are taken from the private AS numbers range between 64512 and 65535. These sub-AS are not exposed outside the confederation.
- The connection between Sub-AS is always eBGP (Since they are identified by a unique ASN) referred as intra-confederation eBGP.
- Within a sub-AS the same iBGP full mesh requirement exists. (Route Reflector can be used here).
- The sub-AS numbers are removed when the route is advertised out of the confederation.
- To the outside world, the confederation appears as a single AS, identified by the Confederation-ID.

BGP Confederation

Use Cases

BGP confederation

Pros and Cons

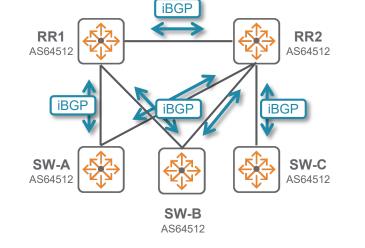
Pros:

- Suitable for large networks and more precisely when routing design is driven by the topology complexity.
 Very diverse and complex topologies will lead to use Confederation, whereas Route-reflector would be a good fit for simple hub & spoke traditional topologies.
- No need to expose the internal topology of the divided autonomous system.
- In comparison to full-mesh, significant reduction in the total number of intra-domain BGP connections.
- For outside world, it looks like a single AS.
- RR can also be deployed to address the full mesh iBGP requirement within sub-AS.

Cons:

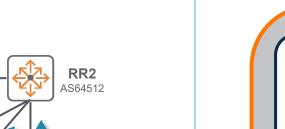
- It may increase the complexity of routing policy based on AS_PATH information.
- It may increases the maintenance overhead in planning and deploying multiple PAS.
- Not suitable for small networks. It is a complex architecture and has configuration overhead.
- Confederation feature must be supported on all nodes inside the Confederation.

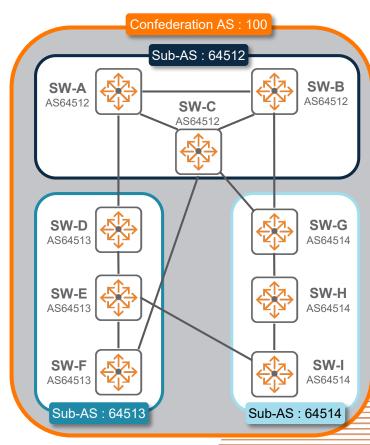
BGP architectures


Full-Mesh

Small network

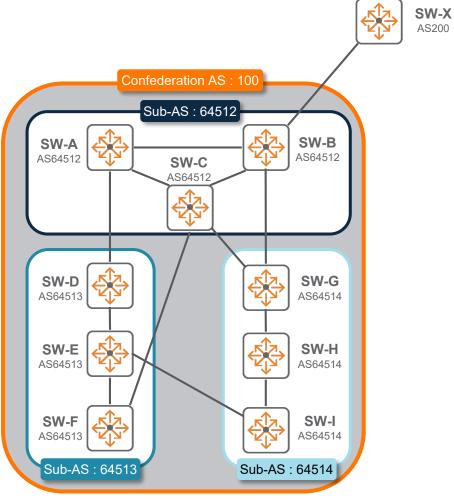
Route-Reflector

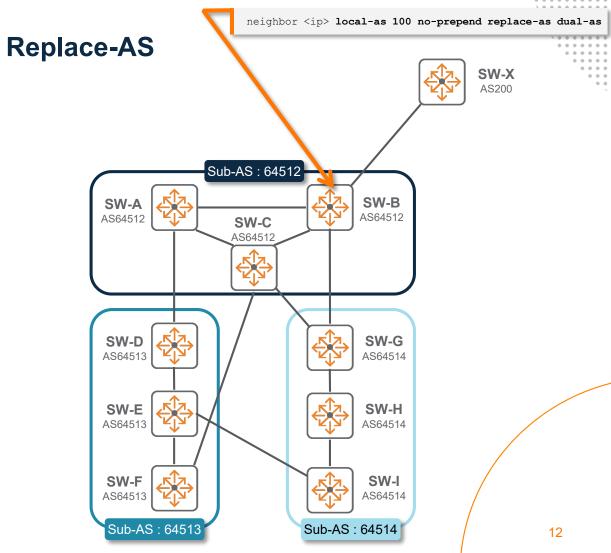

Ideal for Hub & Spoke topology


For best HA: it is recommended that iBGP topology follows the physical topology

Pol

Confederation


Partially mesh, complex topology



BGP architectures

Confederation or bunch of PAS with replace-AS?

Confederation

.

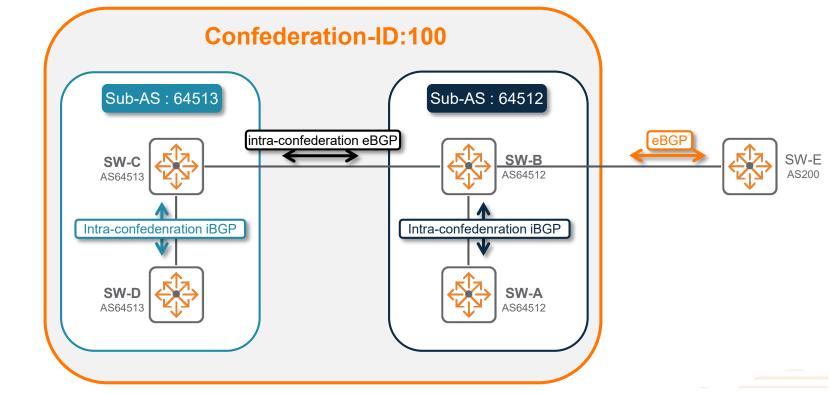
BGP architectures

Confederation or bunch of PAS with replace-AS ?

Confederation

- Confederation feature must be supported on all nodes inside the Confederation.
- Configuration is uniform and peering to external AS from any node automatically removes PAS.
- Local-preference, MED and next-hop attributes are maintained across Sub-AS.
- In case of AS (Confederation ID) change, all nodes must be reconfigured: disruptive change.
- It is highly recommended that all nodes of the same Confederation share the same IGP (OSPF).

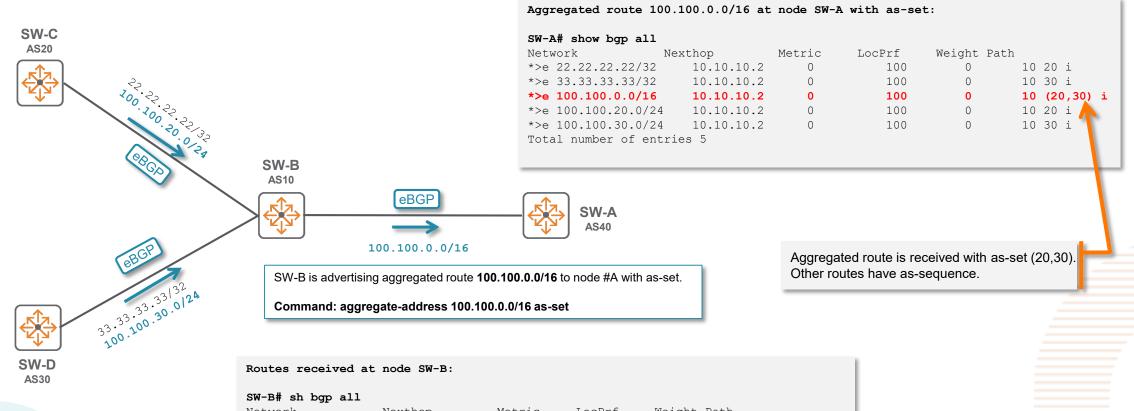
Replace-AS


- No dependency on confederation feature being supported (more interoperable design).
- Specific configuration is required on the node peering to external AS.
- Local-preference and next-hop attributes are reset crossing PAS.
- In case of AS change, only the node(s) peering with external AS must be modified. No disruption inside the bunch of PAS domains.
- IGP domain is usually mapped to the PAS domain.

Details / Caveats

BGP Confederation

- iBGP network is divided into two Sub-AS 64512 and 64513
- Both the Sub-AS are part of a confederation-100
- No change in the external BGP configuration.
- Only 3 connections required within confederation 100.

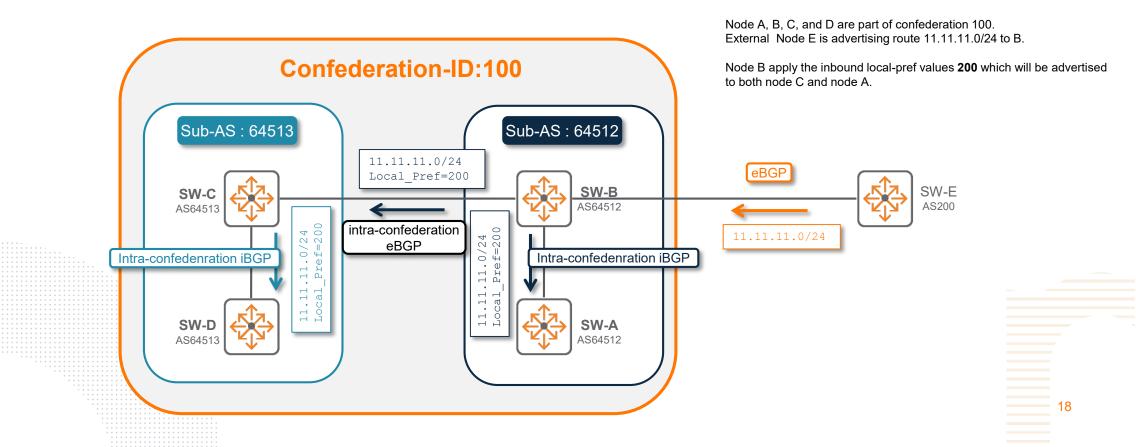

BGP Confederation

AS_PATH attribute in Confederation

- AS_PATH is a well-known mandatory attribute. This attribute identifies the autonomous systems through which
 routing information carried in the UPDATE message has passed.
- AS_PATH attribute is composed of a sequence of AS path segments. (32 AS-paths max in 10.6)
- Each AS path segment is represented by a TLV :
 - <path segment type, path segment length, path segment value>.
- BGP defines the below path segment types:
 - **AS_SET**: unordered set of autonomous systems that a route in the UPDATE message has traversed.
 - **AS_SEQUENCE**: ordered set of autonomous systems that a route in the UPDATE message has traversed.
- Two additional segment types are added for BGP Confederations:
 - AS_CONFED_SEQUENCE: ordered set of Member Autonomous Systems in the local confederation that the UPDATE message has traversed.
 - AS_CONFED_SET: unordered set of Member Autonomous Systems in the local confederation that the UPDATE message has traversed.

AS_SET and AS_SEQUENCE

AS_CONFED_SET and AS_CONFED_SEQUENCE are used inside confederation



Network	Nex	thop	Metric	LocPrf	Weight Pat	h	
*>e 22.22.22.2	22/32	20.20.20.1	0	100	0	20	i
*>e 33.33.33.	33/32	30.30.30.1	0	100	0	30	i
*>e 100.100.2	0.0/24	20.20.20.1	0	100	0	20	i
*>e 100.100.3	0.0/24	30.30.30.1	0	100	0	30	i
Total number of entries 4							

17

Local Preference value inside confederation

- The LOCAL_PREF path attribute is always advertised to iBGP peers and to intra-confederation eBGP peers.
- It is never advertised to eBGP peers external to the confederation.
- Local-preference attribute is maintained across Sub-AS in the confederations which helps in routing design for best path calculation.

BGP Confederation

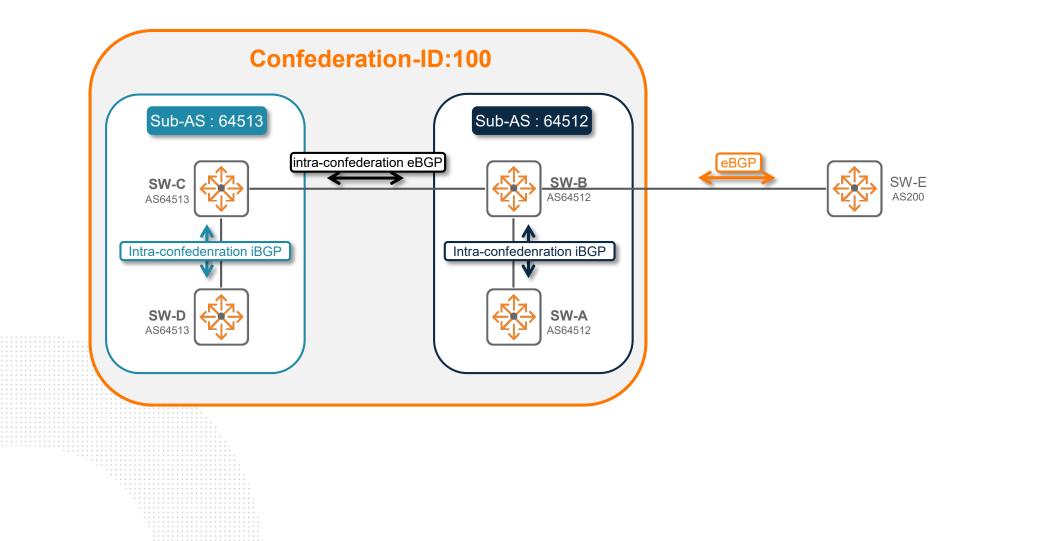
Caveats

- Confederation applies to BGP global configuration: it applies to all AFs and all VRFs, similar to the AS number given to the BGP process
- Not tested for EVPN AF (only IPv4 and IPv6 AF were tested).
- Dotted format (4-byte AS) for Confederation ID is supported as well as for Member-AS number.
- Any confederation ID change will trigger BGP session reset.
- All nodes in the Confederation MUST be configured with the same Confederation ID. If a node is
 misconfigured with a different Confederation number, the BGP session will not establish.
- Standard BGP scale applies:
 - Number of PAS (1024)
 - AS-path length (32)

Configuration

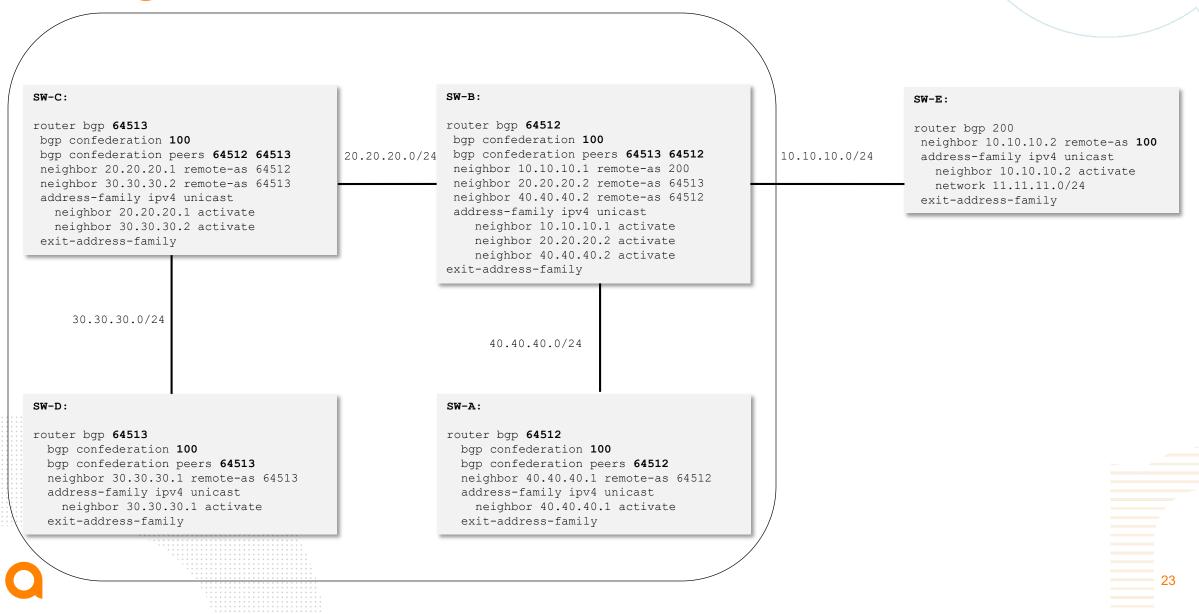
Feature/Solution configuration

Configure confederation identifier. This will be externally visible ASN for the current Autonomous system.


switch(config-bgp)# bgp confederation ?
 <1-4294967295> Set the identifier for the confederation.
 peers Peers for this sub AS.
switch(config-bgp)# bgp confederation 100

 Configure confederation peers. Configure sub ASes within the same confederation to establish an eBGP/iBGP membership inside bgp confederations.

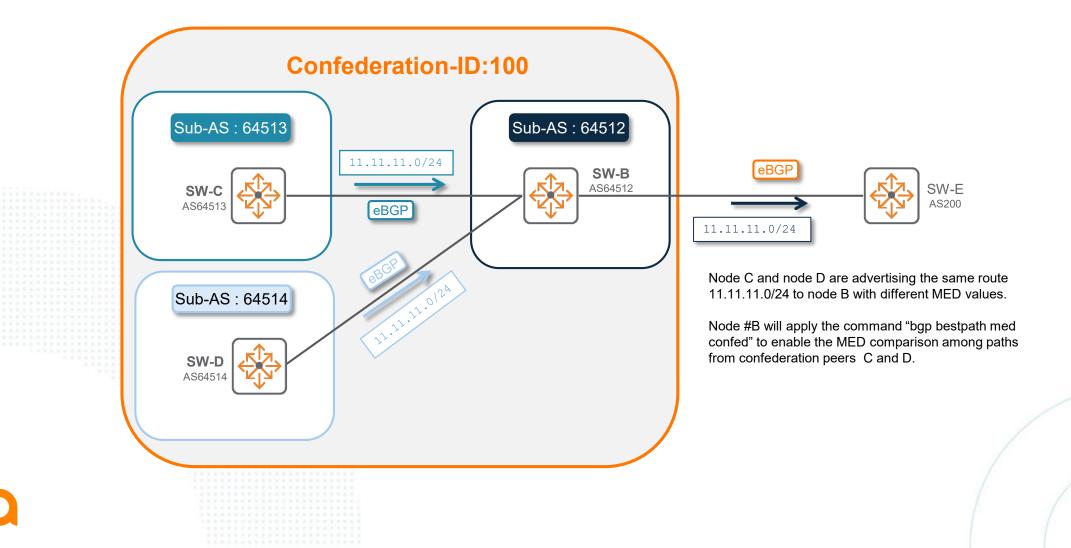
Configure bgp bestpath med confed: To compare identical routes received from different confederation peers during the best path selection process and to select the route with the lowest MED value as the best path


switch(config-bgp)# bgp bestpath med ?
 confed Configure MED comparison among paths from confederation peers
 (config-bgp)# bgp bestpath med confed

A simple BGP Confederation topology with config

22

Configuration of all the nodes:


Best-path inside Confederation

Influencing best path calculation inside confederation

- By default MED values are only compared among routes advertised by the same AS. The same applies inside confederation.
- "bgp bestpath med confed" command is used for forced evaluation of the MED attributes inside confederation.
 - Analogy with **always-compare-med** command use for eBGP routes coming from different ASN.
 - MED values are compared among routes from multiple BGP confederation peers.
 - MED values inside confederation are compared only if no external ASN (to the confed) are present in the AS path.
 - BGP will prefer route with lowest MED.
 - Applying configuration will reset all the peers. The behavior is identical as other bgp bestpath commands (like bgp deterministic-med, always-compare-med).
 - Even if this command applies to the local node, it is strongly recommended that all BGP nodes in a given Confederation share the same configured setting for "bgp bestpath med confed". (to avoid potential routing loop due to different route selection algorithm).

BGP bestpath med confed topology

All the nodes are configured with the same Confederation Identifier but with different sub-as.

Best Practices

Feature/Solution Best Practices

- Private AS number range <64512-65535> should be used for sub-ASes.
- Should be used only when iBGP network has large number of speakers.
- RR can be deployed to address the full mesh iBGP requirement within sub-AS.

Troubleshooting

Confederation Troubleshooting

: 60

Configuration:

router bqp 64512

bqp confederation 100 bgp confederation peers 64513 bgp bestpath med confed neighbor 10.10.10.2 remote-as 64513 address-family ipv4 unicast neighbor 10.10.10.2 activate exit-address-family

Check the configured Confederation ID:

switch# sh bgp all summary VRF : default BGP Summarv _____ Local AS : 64512 BGP Router Identifier : 10.10.10.1 : 0 Log Neighbor Changes : No Peers Cfg. Hold Time : 180 Cfg. Keep Alive Confederation Id : 100

R4# show bgp all

Status codes: s suppressed, d damped, h history, * valid, > best, = multipath, i internal, e external S Stale, R Removed, a additional-paths Origin codes: i - IGP, e - EGP, ? - incomplete

VRF : default Local Router-ID 100.100.20.1

Address-family : IPv4 Unicast

Network	Nexthop	Metric	LocPrf	Weight	Path
*>e 1.1.1.1/32	10.10.10.1	0	100	0	[64512],200 i

Check the configured Confederation peers:

Switch# show bgp all neighbors

BGP Neighbor 10.10.10.2 (External) Description • Peer-group :

Local-AS Prepend BFD Password Last Err Sent Last SubErr Sent	: 64513 : 0 : Idle : 0 : No : 180 : 0 : 00h:00m:00s : No : Disabled : : No Error : No Error : No Error : No Error
Graceful-Restart Gr. Stalepath Time TTL Weight	

Confederation-Peers : Yes

Local	Router	Id	:	10.10.10.
Local	AS		:	64512
Local	Port		:	0
Admin	Status		:	Up
Conn.	Dropped		:	0
Update	e-Source		:	
Cfg. H	Keep Ali	ve	:	60
Neg. H	Keep Ali	ve	:	0
Alt. I	Local-AS		:	0

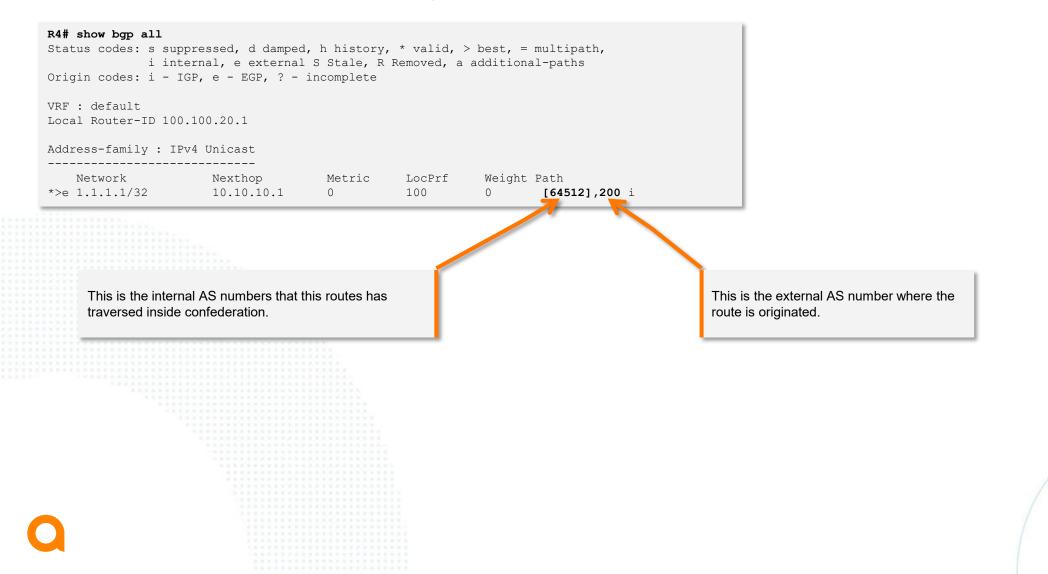
Gr. Restart Time

Local Cluster-ID

Fall-over

Remove Private-AS : No

1


: 120

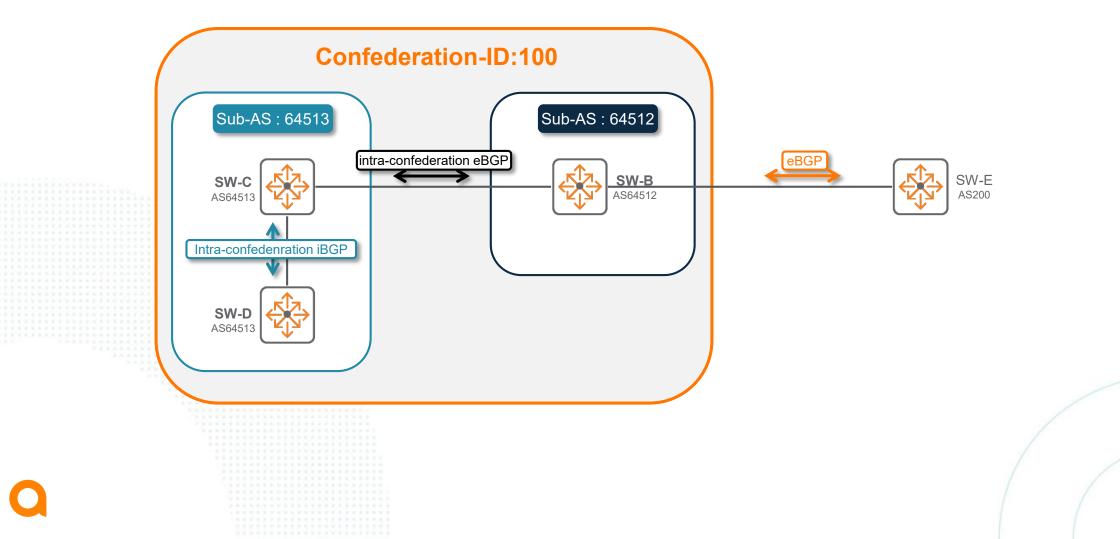
: No

:

Confederation Troubleshooting

AS Numbers in the show bgp route command

Confederation Troubleshooting


MIB Dumps and Logs

- Below MIB tables should be verified for the configured Confederation values. These table are captured as part of "diag bgp dump mib" command.
 - python /etc/mib.py get localhost bgpPeerTable
 - python /etc/mib.py get localhost bgpRmEntTable
- Fastlogs: ovs-appctl -t hpe-routing fastlog show bgp_dump
 - BGP Confederation ID is set to: 100
 - BGP Confederation-peers set to true for: 30.30.30.1
 - BGP MED Confed configured/unconfigured

Demo

Demo BGP Confederation topology with config

33

Demo BGP Confederation topology with config

Confederation node D

hostname D
interface 1/1/1
 no shutdown
 ip address 30.30.30.2/24
 ip ospf 1 area 0.0.0.0
interface loopback 1
 ip address 3.3.3.3/32
 ip ospf 1 area 0.0.0.0

router ospf 1 area 0.0.0.0 router bgp 64513 bgp confederation **100** bgp confederation peers **64513** neighbor 2.2.2.2 remote-as 64513 neighbor 2.2.2.2 update-source loopback

address-family ipv4 unicast neighbor 2.2.2.2 activate redistribute connected network 3.3.3.3/32

exit-address-family

https-server vrf mgmt!

Confederation node C

hostname C interface 1/1/1 no shutdown ip address 20.20.20.2/24 ip ospf 1 area 0.0.0.0 interface 1/1/2 no shutdown ip address 30.30.30.1/24 ip ospf 1 area 0.0.0.0 interface loopback 1 ip address 2.2.2.2/32 ip ospf 1 area 0.0.0.0

! !

1

1

router ospf 1 area 0.0.0.0 router bgp 64513 bgp confederation 100 bgp confederation peers 64512 64513 neighbor 1.1.1.1 remote-as 64512 neighbor 1.1.1.1 update-source loopback 1 neighbor 3.3.3.3 remote-as 64513 neighbor 3.3.3.3 update-source loopback 1 address-family ipv4 unicast neighbor 1.1.1.1 activate neighbor 3.3.3.3 activate redistribute connected exit-address-family

Confederation node B

hostname B interface 1/1/1 no shutdown ip address 10.10.10.2/24 ip ospf 1 area 0.0.0.0 interface 1/1/2 no shutdown ip address 20.20.20.1/24 ip ospf 1 area 0.0.0.0 interface loopback 1 ip address 1.1.1.1/32 ip ospf 1 area 0.0.0.0 route-map rm1 permit seg 10 set local-preference 200 1 router ospf 1 area 0.0.0.0 router bgp 64512 bgp confederation 100 bgp confederation peers 64513 neighbor 2.2.2.2 remote-as 64513 neighbor 2.2.2.2 update-source loopback 1 neighbor 10.10.10.1 remote-as 200 address-family ipv4 unicast neighbor 2.2.2.2 activate neighbor 10.10.10.1 activate neighbor 10.10.10.1 routemap rm1 in redistribute connected exit-address-family 1

External node E

hostname E 1 ssh server vrf mgmt vlan 1 interface mgmt no shutdown ip dhcp interface 1/1/1no shutdown ip address 10.10.10.1/24 interface loopback 1 ip address 11.11.11.11/24 ! 1 router bgp 200 neighbor 10.10.10.2 remote-as 100 address-family ipv4 unicast neighbor 10.10.10.2 activate network 11.11.11.0/24

```
network 11.11.11.0/2
exit-address-family
```