UBT Enhancements & Device Fingerprinting

Justin Noonan
Technical Marketing Engineer
Overview – User-Based Tunneling Enhancements

Role-Based Auto VLAN Creation
- Automates VLAN creation with user roles for VLAN Extend mode in UBT or locally-switched user roles (L2) or VSA assigned VLANs
- Eliminates the need for manually creating VLANs on every single switch at the access layer
- Simplifies switch configuration and deployment
- Only one command needed to enable
- Supported on 6200, 6300, 6400 platforms

Client IP Tracker - UBT Clients
- Tracks the IP addresses of client traffic connected to switch through user tunnels
- Assists operators with client visibility for tunneled clients
- Notes any IP address changes in the Client IP Table
- Sends an ARP/ND probe if no client traffic to validate existing address
- Enabled at Switch, VLAN, or Port level
- Supported on 6200, 6300, 6400 platforms
Role-Based Auto VLAN
Role-Based Auto VLANs

– Scale based on maximum clients and VLANs available
 – Max Clients
 – 6400/6300 = 256 per port
 – 6200 = 32 per port
 – Max VLANs
 – 6400/6300 = 4094
 – 6200 = 2048

– Caveats
 – Mutually Exclusive with VSX, MVRP, and RPVST – must be disabled to enable auto VLANs
 – No SNMP Support
 – Not supported with the Reserved VLAN mode (local VLAN) of UBT
Role-Based Auto VLAN Configuration

– New command to allow Authentication-Based VLAN creation either by Role or VSA

Switch(config)#port-access auto-vlan

– VLAN list shows VLANs assigned statically and by port-access

Switch(config)# show vlan

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Status</th>
<th>Reason</th>
<th>Type</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFAULT_VLAN_1</td>
<td>down</td>
<td>no_member_forwarding</td>
<td>default</td>
<td>1/1/2,1/1/4-1/1/28</td>
</tr>
<tr>
<td>100</td>
<td>VLAN100</td>
<td>up</td>
<td>ok</td>
<td>static</td>
<td>1/1/1</td>
</tr>
<tr>
<td>200</td>
<td>VLAN200</td>
<td>up</td>
<td>ok</td>
<td>port-access</td>
<td>1/1/3</td>
</tr>
</tbody>
</table>

– Configure the VLAN either in the downloadable role (ClearPass), Local Role, or VSA

*Note: UBT not required
Troubleshooting Role-Based Auto VLANs

– Ensure that the auto-vlan command is enabled
– debug portaccess will show any output dependent on the auto-vlan command

2021-07-30:09:44:00.604334|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Event handler of portclientauth with mac f4:30:b9:ce:7e:e6 on port '1/1/2' for event 'Auth-Profile Ready' in state 'FINAL AUTH SUCCESS' returned 'OK'

2021-07-30:09:44:00.604297|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handling event 'Auth-Profile Ready' for mac f4:30:b9:ce:7e:e6 on port 1/1/2 in state 'FINAL AUTH SUCCESS'

2021-07-30:09:44:00.604255|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handing over the event 3 to component Port Client Attribute

2021-07-30:09:44:00.600586|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handing over the event 3 to component Secure VLAN

2021-07-30:09:44:00.600564|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Event handler of VLAN '200' for event 'Secure Client Add’ in state 'AUTOACTIVE' returned 'Ok'

2021-07-30:09:44:00.600539|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handling event 'Secure Client Add’ for VLAN '200 in state 'AUTOACTIVE'

2021-07-30:09:44:00.600505|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handling over the event 0 to component Port Attribute

2021-07-30:09:44:00.600466|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Event handler of VLAN '200 for event 'Secure Client Add’ in state 'NULL' returned 'Ok'

2021-07-30:09:44:00.600406|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handling over the event 0 to component Secure VLAN

2021-07-30:09:44:00.600343|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handling over the event 1 to component Secure VLAN

2021-07-30:09:44:00.600270|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Event handler of VLAN '200 for event 'Secure Client Add’ in state 'NULL' returned 'Ok'

2021-07-30:09:44:00.600217|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handling over the event 3 to component Port Client Attribute

2021-07-30:09:44:00.600157|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handling over the event 0 to component Port Attribute

2021-07-30:09:44:00.600103|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Event handler of VLAN '200 for event 'Secure Client Add’ in state 'NULL' returned 'Ok'

2021-07-30:09:44:00.600015|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handling over the event 3 to component Secure VLAN

2021-07-30:09:44:00.600015|port-accessd|LOG_DEBUG|MSTR|1|PORTACCESS|PORTACCESS_SERVICES|logID=33151 Handling over the event 0 to component Port Client Attribute

– Look for the “Secure client add” messages with the VLAN ID that is returned as “ok”
– Final Auth Success message indicates that the client was successfully placed into the automatically created VLAN
Client IP Tracker for User-Based Tunneling
UBT Client IP Tracker

– Scale based on maximum clients and VLANs available
 – Limited to Max UBT Clients
 – 6400/6300/6200/4100i = 1017 per switch/stack

– Key Considerations
 – Will work on an MC-LAG
 – Can be configured on LAG interfaces
 – Client MAC Address will appear as learned on a specific physical LAG port
 – Works the same as an access port
 – Not supported on a VSX ISL
 – Will not learn clients from a VSX peer – only local
 – Not supported on routed-only ports
 – Not supported on SVI ports
UBT Client IP Tracker - Configuration

– Configurable via Globally, Port, or VLAN

– Default update interval is 1800 seconds – recommended setting
 – Can be lowered to a minimum of 60s (range is 60-28000)
 – Use caution as this will generate multiple probes and additional traffic

– “show client ip” lists the Client IP and MAC addresses that are being tracked

– When an IP is changed, the list will update, which could result in multiple entries for the same MAC

```
Switch(config)#client track ip
interface 1/1/2
  client track ip enable
  client track ip update-interval 60
```

```
6300=UI(config-if)# show client ip

+-----------------+-------+---+----------+
| MAC Address     | Interface | VLAN | IP Address |
+-----------------+-------+---+----------+
| f4:30:b9:ce:7e:e6 | 1/1/2 | 200 | 10.5.6.60 |
| f4:30:b9:ce:7e:e6 | 1/1/2 | 200 | 10.5.6.65 |
```
UBT Client IP Tracker - Configuration

– At the port level, client IP tracker is set to auto, which is the default mode and should be best practice

```bash
Switch(config-if)# client track ip
  auto             Default mode. Track limited set of clients based on LLDP/CDP signature and access/trunk configuration
  client-limit     Configure the maximum number of clients tracked on this port
  disable          Client IP addresses are not tracked on this port
  enable           Track all client IP addresses on this port
  update-interval  Configure the IP address update interval in seconds
  <cr>
```

– The feature can also be enabled and disabled, as well as set the client limit for the number of clients that will be tracked

– The update interval can also be adjusted in case of troubleshooting and need to probe clients more frequently
UBT Client IP Tracker - Configuration

– When the update interval timer is expired, the switch will send out an ARP or ND probe to probe the clients for any IP address changes

```
Frame 211: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on Interface 'WPF_1f18785d-39c5-4c46-a083-8288a55a837', id 0
Ethernet II, Src: Aruba Pumpkin_92:d4:c0 (88:3a:30:92:d4:c0), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Address Resolution Protocol (request)
  Hardware type: Ethernet (0x0003)
  Protocol type: IPv4 (0x0001)
  Hardware size: 6
  Protocol size: 4
  Opcode: request (1)
  Sender MAC address: Aruba Pumpkin_92:d4:c0 (88:3a:30:92:d4:c0)
  Sender IP address: 0.0.0.0
  Target MAC address: Broadcast (ff:ff:ff:ff:ff:ff)
  Target IP address: 0.0.0.0
```

– The client will then respond back with the new address which will then be updated in the Client IP table

```
Frame 261: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on Interface 'WPF_1f18785d-39c5-4c46-a083-8288a55a837', id 0
Address Resolution Protocol (reply)
  Hardware type: Ethernet (0x0003)
  Protocol type: IPv4 (0x0001)
  Hardware size: 6
  Protocol size: 4
  Opcode: reply (2)
  Sender MAC address: Hewlett Packard CE:7e:e6 (f4:38:0b:ce:7e:e6)
  Sender IP address: 10.5.6.05
  Target MAC address: Aruba Pumpkin_92:d4:c0 (88:3a:30:92:d4:c0)
  Target IP address: 0.0.0.0
```
UBT Client IP Tracker - Troubleshooting

• Troubleshooting flow

1. Check that Client IP Tracker is enabled globally
2. Check that the feature is enabled on the desired VLAN or port – if needed
3. Verify that clients have some traffic on them so that the switch can detect the IP address from the traffic
4. Ensure the probe update method is enabled if no client traffic is received
Demos
Device Fingerprinting

– Device Fingerprinting is achieved by configuring a switch to collect the traffic patterns and send only required information or attributes to an analyzer.

– The switch (Collector) collects the protocol data sent by the end clients and the Analyzer consumes this data to fingerprint the device.

– This solution consists of two parts:
 – **Collector**: Collects the information from the packets that are obtained from the clients. The information collected is based on the certain type of traffic from the clients. Aruba CX switches will act as collectors.
 – Current supported protocols are: DHCP, HTTP, LLDP and CDP.
 – **Analyzer**: Is an entity that processes the information collected from the collector and fingerprints the device with the details of the device such as type, host name, vendor type, etc. An example of an analyzer can be Central (using CPDI) or ClearPass.

– Previously, device fingerprinting could be found on the AOS-Switch product line.
Device Fingerprinting

- Device Fingerprinting allows a network operator to have better visibility into what types of devices are plugging into the access layer.

- By obtaining as much information as possible from a client, more granular security policies can be created and enforced to maintain client and network stability.

- This is the first phase of introducing device fingerprinting in AOS-CX:
 - Central support coming in 2.5.4 (client hostname visibility).
 - CPDI support coming in future.
 - ClearPass support coming in future.

- Supported on 6200, 6300, 6400 platforms.

- Scale:
 - 6300/6200 = 2000 clients
 - 6400 = 4000 clients
 - Max number of DFP profiles = 32 (all supported platforms)

Note: The only analyzer that will currently be supported is Central 2.5.4 which can receive the hostname attribute from the switch fingerprint attributes.
Device Fingerprinting - Configuration

– Create Device Fingerprinting profile – Select Protocol – Apply to interface

Switch(config)#client device-fingerprint profile DFP
Switch(config-device-fingerprint)#
 cdp Specify the CDP attributes for device fingerprinting
 dhcp Specify the DHCP attributes for device fingerprinting
 end End current mode and change to enable mode.
 exit Exit current mode and change to previous mode
 http Specify the HTTP attributes for device fingerprinting
 list Print command list
 lldp Specify the LLDP attributes for device fingerprinting
 no Negate a command or set its defaults
 show Show running system information

Switch(config)# client device-fingerprint profile DFP
 lldp tlv-num 5
 dhcp
 http user-agent
Switch(config-if)# client device-fingerprint
 apply-profile Apply profile on a port/portlist
 client-limit Specify client-limit on a port/portlist

– Protocols supported are:
 – CDP
 – LLDP
 – DHCP
 – HTTP
Device Fingerprinting - Configuration

Supported LLDP Parameters
- chassis-id (1)
- port-id (2)
- time-to-live (3)
- port-description (4)
- system-name (5)
- system-description (6)
- system-capabilities (7)
- management-address (8)

Supported CDP Parameters
- chassis-id (1)
- port-id (2)
- address (3)
- capabilities (4)
- version (5)
- platform (6)
- native-vlan (10)
- duplex (11)

Supported DHCP Parameters
- Option 12: Hostname - This provides the information about the name of the client.
- Option 55: Parameter Requested List
- Option 60: Vendor Class Identifier (VCI)

The combination of the option sequence in option 55 or vendor ID (60) is used to infer the OS and device type of the remote client.

Supported HTTP Parameters
- HTTP – User Agent
Device Fingerprinting - Validation

– Show client device-fingerprint

```plaintext
6300-UI(config)# show client device-fingerprint
Client MAC Address: f4:30:b9:ce:7e:e6
Port : 1/1/2
VLAN : 200
Protocol: DHCP
   Host name(12) : JustAsh-Elitebook
   Parameter Requested List(55) : 1,3,6,15,33,43,44,47,119,121,249,252
Vendor Class Identifier(60) : MSFT 5.0
Protocol: HTTP
   --
Protocol: LLDP
   System-Description(6) :
   System-Name(5) :
Protocol: CDP
   n/a

Client MAC Address: f8:60:f0:c8:e2:00
Port : 1/1/3
VLAN : 200
Protocol: DHCP
   Parameter Requested List(55) : 1,3,4,23,67,66,43,6,15,119,42,2,60,138
   Vendor Class Identifier(60) : Aruba JL693A 2930F-12G-PoE+2G-2SFP+ Switch dslforum.org
Protocol: HTTP
   --
Protocol: LLDP
   n/a
```

```plaintext
> From 23: 16B bytes on wire [1044 bits], 368 bytes captured (2044 bits) on interface GigabitEthernet0/0
> Ethernet II, Src: 60:18:ee:5e:00:2e (fa:ff:ff:ff:ff:ff), Dst: broadcast (ff:ff:ff:ff:ff:ff)
> Internet Protocol Version 4, Src: 10.0.0.0, Dst: 255.255.255.255
> User Datagramue Protocol, Src Port: 64, Dst Port: 67
> Dynamic Host Configuration Protocol (Request)
 Marriage type: Boot Request (1)
   Hardware type: Ethernet (0x80)
   Hardware address length: 6
   Hops: 0
   Transaction ID: 0x7f21b51b
   Seconds elapsed: 0
   Bootp flags: 0x0000, Broadcast flag (broadcast)
   Client ID address: 0.0.0.0
   Your (client) IP address: 0.0.0.0
   Next server IP address: 0.0.0.0
   Relay agent IP address: 0.0.0.0
   Client MAC address: 00:18:ee:5e:00:2e (64:18:ee:5e:00:2e)
   Client hardware address pdgettig: 000000000000000000000000
   Server host name not given
   Boot file name not given
   Magic cookie: DHCP
   Option: (33) DHCP Message Type (Request)
      Length: 1
      DHCP: Request (3)
   Option: (61) Client identifier
      Option (1) Host Name
         Length: 17
         Host Name: JustAsh-Elitebook
      Option (89) Vendor Attribute: Domain Name
         Option (00) Vendor class identifier
         Option (55) Parameter Request List
         Option (255) END
```
Device Fingerprinting - Validation

– Central 2.5.4 (~Q4CY21)
Device Fingerprinting Troubleshooting

– debug devicefingerprint

– Can see actual attributes gained from dhcp options

– Ensure profile is created and enabled

– Ensure DFP is enabled on the port

– Ensure the appropriate protocol is being transmitted by fingerprinted device (Ex. LLDP turned on, DHCP enabled, etc.)
Thank you

justin.noonan@hpe.com