
qwertyuiopasdfghjklzxcvbnmqw
ertyuiopasdfghjklzxcvbnmqwert
yuiopasdfghjklzxcvbnmqwertyui
opasdfghjklzxcvbnmqwertyuiopa
sdfghjklzxcvbnmqwertyuiopasdf
ghjklzxcvbnmqwertyuiopasdfghj
klzxcvbnmqwertyuiopasdfghjklz
xcvbnmqwertyuiopasdfghjklzxcv
bnmqwertyuiopasdfghjklzxcvbn
mqwertyuiopasdfghjklzxcvbnmq
wertyuiopasdfghjklzxcvbnmqwe
rtyuiopasdfghjklzxcvbnmqwerty
uiopasdfghjklzxcvbnmqwertyuio
pasdfghjklzxcvbnmqwertyuiopas
dfghjklzxcvbnmqwertyuiopasdfg
hjklzxcvbnmqwertyuiopasdfghjk
lzxcvbnmrtyuiopasdfghjklzxcvbn
mqwertyuiopasdfghjklzxcvbnmq
wertyuiopasdfghjklzxcvbnmqwe

Digital	 Certificates	
	

The	 Minimum	 You	 Need	 To	 Know	
	

5/28/2007	
	

Jon	 Green	
	

Digital	 Certificates-‐	 The	 Minimum	 You	 Need	 To	 Know	

Aruba’s position in the IT infrastructure as an authentication point, VPN termination
point, and as a part of an enterprise network’s security framework increasingly requires
that we deal with digital certificates. But what are these things and how do they work?
What is X.509? What is a “chain of trust”? And what on Earth is a “self-signed
certificate”? This article intends to cover the minimum you need to know to competently
deal with digital certificates. Some concepts will be overly simplified; those looking for
more in-depth coverage without necessarily resorting to a graduate-level course in
cryptography are encouraged to pick up a copy of Cryptography Decrypted by H.X. Mel.

Secret	 Key	 versus	 Public	 Key	 Cryptography	

At a basic level, cryptography is about hiding secrets. Most modern encryption schemes
use a secret key to encrypt data, thus obscuring the contents of the data we wish to
protect. The intended receiver of this data decrypts the data using the same secret key.
This is a very simple system, and many of the cryptosystems we are familiar with operate
this way, such as AES, DES, 3DES, and RC4. However, this type of system brings up
the thorny issue of key management: How do we ensure that both the sender and the
receiver have the same secret key, and how to we ensure that others don’t find out the
secret key? This is where public key cryptography comes in.

In public key cryptography, there are two keys instead of just one. The two keys, known
as a public key and a private key, are mathematically related to each other such that data
encrypted with a private key can only be decrypted by the public key, and data encrypted
with the public key can only be decrypted by the private key. As the names imply, the
private key is something you keep private – only you have this key. The public key, on
the other hand, is made available to anyone in the world who wants it. The system works
as an encryption scheme because the keys are very large numbers, and factoring (finding
all the prime numbers that, multiplied together, equal the number) a very large number is
a computationally difficult problem.

To use public key cryptography with another person, for example to exchange encrypted
emails, you must know the other person’s public key. When sending an email, you will
encrypt the email with the other person’s public key. Upon receipt, the other person will
decrypt your message using his private key.

Signing	
Public key cryptography is commonly used to encrypt data as well as to sign it.
Encryption is about keeping data secret, while signing is about the integrity of the data –
making sure it was not tampered with. Very often we may want to leave data in the clear
(plaintext or cleartext) but want some assurance that data has not been modified in

transport, by a “man in the middle” for example. Signing can also be used as a “digital
signature” for documents in lieu of signing a document in ink. Adobe Acrobat, for
example, allows one to imbed a digital signature block in a document. Clicking on this
block, you will be prompted to digitally sign the document using public key
cryptography. By signing a document with a private key, this proves that you and only
you signed the document, since only you have the private key. This brings us to the other
major use of signing: non-repudiation. This principle establishes that you and only you
signed a document, and that the document was not modified after the time you signed it.

Signing is very simple: Take the document or data that you wish to sign and compute a
hash of the document using your favorite hash algorithm such as MD5 or SHA1. Since
the odds of two documents that generate the same MD5 hash are extremely (extremely!)
low, we now have a solid guarantee of document integrity, right? Wrong: Anyone
modifying the document during transport could simply recompute the MD5 hash and
replace it. This is where digital signing comes in. Take the MD5 hash and encrypt it
using your private key, then attach it to the end of the document. A recipient of the
document will decrypt the block at the end using your public key (if you want to make it
easy, attach the public key to the document) to get back the MD5 hash. The recipient
then computes the MD5 hash of the document, and compares it to the received MD5
hash. If the two match, the document was not altered in transport.

Key	 Distribution	
The astute among you will immediately notice a flaw in the document signing example
above:
 “if you want to make it easy, attach the public key to the document”

Let’s put our “man in the middle” into play here – let’s call him “Gregor”. Randy wants
to send Josh a signed email. Randy types up his email, computes the MD5 hash of his
email, encrypts the hash with his private key, and attaches it to the email. Because he has
never communicated with Josh before, Josh doesn’t have Randy’s public key. Because
Randy is the helpful sort, he attaches his public key to the email. Gregor intercepts the
email, changes the text, and then recomputes the digital signature using a private key he
generated himself. He attaches the corresponding public key to the email, replacing the
one Randy originally attached. He then forwards the email along to Josh. Upon receipt,
Josh installs the attached public key into his electronic “keyring” and uses it to
successfully check the integrity of the received email. Since it checks out, he knows the
message from Randy is genuine and wasn’t modified in transport.

The problem here is a twist on our classic secret key encryption problem: key
distribution. We have removed the problem of keeping the key secret – the public key is
supposed to be public. However, we have no way to verify that a public key actually
belongs to the person it is supposed to belong to – the public key is simply a large
number, with no identifying information attached. An adversary can easily substitute one
large number for another, and fool you into using the wrong public key. One solution
includes meeting the other person face to face, checking two forms of government-issued

photo ID, and then exchanging public keys on CD-ROMs or floppies. Other solutions
involve generating “key fingerprints” and then reading these over the phone to the other
person (assuming you have positively established the person is who he claims to be.)
These solutions are cumbersome at best, and would not allow public key cryptography to
be widely deployed if they were required. Fortunately, digital certificates provide a
solution for us.

Digital	 Certificates	
A digital certificate makes someone else do the job of verifying that a public key belongs
to the correct person or entity. This “someone else” is known as a certificate authority
(CA). A certificate authority is an organization that the users of a digital certificate have
chosen to trust to perform the validation of identity and the issuance of digital
certificates. Well-known public certificate authorities on the Internet include VeriSign,
Thawte, Entrust, and GeoTrust. These companies will, for a fee, verify your identity or
the identity of your organization and then issue you a digital certificate, which contains
your public key. Other users of the system, having chosen to trust these CAs, will know
that your digital certificate is genuine. The entire system is known as a Public Key
Infrastructure, or PKI.

The most widely used PKI is the X.509 system, specified by the ITU-T. X.509 specifies
a file format that is used for digital certificates. Inside a digital certificate file are a
number of fields including the “distinguished name”, an alternate name (often an email
address), a serial number, a validity date, an expiration date, information about the
encryption algorithms used to generate the keys, and other information. The digital
certificate file also contains your public key, typically generated using the RSA or DSA
algorithm. The certificate authority generates this entire file, then digitally signs the file
using a private key.

The CA’s private key has a corresponding public key. Any user in the PKI must have the
CA’s public key ahead of time in order to validate a digital certificate generated by that
CA. How do we get that public key? Easy: another digital certificate, which contains
the CA’s public key and is also signed by the CA. This type of certificate is known as a
self-signed certificate, because it is signed with the same public key that is contained
within the certificate. Users in a PKI must choose to trust a CA’s self-signed certificate
before it can be used to validate other certificates generated by the CA. In some cases,
network administrators will take care of establishing trust for a particular CA. In the case
of large public Internet CAs such as VeriSign or Thawte, operating system manufacturers
and software developers have taken care of this for us. Microsoft Windows users can
view the installed CA certificates, for example, by opening Internet Explorer and
navigating to Tools->Internet Options->Content->Certificates. Microsoft’s term for these
CAs is “Trusted Root Certification Authorities”.

If you double-click one of these CAs, you can view the certificate details. Because these
are self-signed root certificate authorities, you will see that the certificate “Issued to” and
“Issued by” fields are the same.

If you further navigate to “Certification Path”, you can view the certificate issuance
chain. A root CA certificate will contain one and only one entry, because it is self-
signed.

Compare this to an Intermediate Certification Authority. An Intermediate CA is a CA
server that can issue trusted digital certificates, but only on the authority of a higher level
CA server. If the root CA certificate is revoked or expires, the intermediate CA is also no
longer trusted. Below, we see the certification path for an intermediate CA. Note that we
must already have a certificate for “Equifax Secure eBusiness CA-1” in our certificate
store in order to trust this intermediate CA.

End-‐User	 Certificates	
Now that we understand the structure of a PKI and how certificate authorities work, let’s
look at how an end user gets a digital certificate. This could include a company obtaining
a digital certificate to be used for an SSL website, or an individual looking for a
certificate to sign emails or other documents. I will use for this example my own
personal digital certificate, used to digitally sign emails. GeoTrust offers a certificate
called “My Credential” that costs $19.95 per year. For this price, they will do some
simple verification of identity that involves checking an email address and a phone
number. For a higher fee, CAs will verify additional information such as a business
license, a physical address of a company, employment status, and other details that
increase confidence in identity.

GeoTrust begins the process by asking for some personal information:

A small window opens up and prompts the user to generate a password. This password is
used to generate a public/private keypair, which the GeoTrust server stores. It is
important to remember the password – it will be used again later.

After providing payment information, GeoTrust sends an email to the supplied email
address and requires the user to validate the email address by clicking on an HTTP link.
Next, the GeoTrust system calls the provided phone number and requires that the user
validate the phone number as well.

Once identity verification has been completed, the GeoTrust server takes the user’s
public key along with information such as name, email address, phone number, and
validity period, and generates a Certificate Signing Request (CSR). The CSR is fed to the
actual CA server. The CA server takes all supplied information, puts it into an X.509 file

format, and signs the file using its private key. Note that the CA server was never given
the user’s private key – the private key is not part of the digital certificate and thus is not
required by the CA server.

The user downloads the certificate and private key together in a file format known as
PFX or PKCS#12 (see below for more details on file formats) and installs this certificate
into the operating system or email client. Looking at the certificate below, we can see
that it was issued by the CA server known as “GeoTrust True Credentials CA 2” and that
it is valid for some specific purposes such as protecting email. It is not valid, for
example, to be used as a CA certificate itself, and thus cannot be used to issue additional
certificates on behalf of GeoTrust. We can also note the presence of “You have a private
key that corresponds to this certificate” – this line indicates that this certificate can be
used to digitally sign documents or data.

Looking at the certificate details, we find information inserted into the Subject field about
how identity was verified. This lets the user of the certificate determine how much trust
should be given to it – a certificate where a user physically presented himself and a
passport at the CA’s office will be given a higher degree of trust than a simple
email/phone validation.

Going back to our email example from earlier, Randy (after obtaining his own certificate)
can now digitally sign his email to Josh using his private key. But now, instead of
attaching his public key to the email, he attaches his digital certificate. Josh receives the
digital certificate, and his system looks for a matching CA certificate for the issuing CA.
Finding it, his system uses the CA’s public key to verify Randy’s certificate and
determine that it is valid. Next his system extracts Randy’s public key from the digital
certificate and uses it to check the integrity of the email message. Finding that the
integrity check passes, we can be sure that Gregor, our man in the middle, did not modify
the message in transit.

Certificate	 File	 Formats	
Using our GeoTrust example again, a server at GeoTrust packages our new digital
certificate and our private key into a single file. This file format is known as PKCS#12
and typically takes the file extension of .p12 or .pfx. In order to protect the
confidentiality of this file, it is password-protected using the password we entered at the
start of the process. The password protection is important – without it, anyone getting
ahold of this file would have a valid digital certificate AND the corresponding private
key, and could impersonate us at will.

A file that contains an unprotected certificate and corresponding private key is often
known as a PEM (Privacy Enhanced Mail) format file. You can recognize a PEM file
because it is base64-encoded plain ASCII text and takes the following format:

-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQDOrkXS8iSveCyNd12JWNVueY+CFPC8YvDCVHb...
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
MIIDjDCCAvWgAwIBAgIBADANBgkqhkiG9w0BAQQFADCBkTELMAk...
-----END CERTIFICATE-----

Other common encoding schemes for digital certificates include CER (Canonical
Encoding Rules) and DER (Distinguished Encoding Rules). These files are not human-
readable text.

Certificate	 Revocation	
Let’s say that Randy carelessly stores his digital certificate and private key in a PEM file
and stores it on a network drive where others can get access to it. Randy’s adversary –
let’s call him “Taylor” – comes along and finds this file, and begins using it to
impersonate Randy. Once the private key to a certificate has been exposed, the digital
certificate can no longer be trusted by anyone. This is where certificate revocation comes
in. Certificate revocation allows us to go back to the issuing CA and ask that it revoke, or
make invalid, a previously issued certificate. Each CA will generate a Certificate
Revocation List (CRL) that contains the serial numbers of certificates that have been
revoked. An end user or client software should, before trusting a digital certificate, check
the CRL from that CA to make sure the certificate is still valid. In practice, this step is
rarely done because CRLs can grow very large and there is significant overhead involved
in checking a CRL each time.

An alternate to CRLs is known as Online Certificate Status Protocol (OCSP). This is
described in RFC 2560 and takes the form of a request/response query to an OCSP
server. OCSP queries eliminate the overhead of transferring large CRLs, but can add
delay to a transaction (for example, an 802.1x authentication during roaming).

Conclusion	
Properly implemented, public key infrastructure provides a solid method of determining
identity, encrypting communication, verifying integrity and establishing non-repudiation.
If there is any downside to this technology, it is in the number of moving parts and the
complexity of understanding how it works. As the example with GeoTrust shows,
however, automation can greatly simplify PKI mechanics and allow a user of even
modest technical ability to participate in the system. This is a trend that should continue
into higher functions such as server certificates and even certificate authorities.

