
CONFIGURING DIFFERENT APIS IN ARUBA 8.X

10:00 GMT | 11:00 CET | 13:00 GST
Oct 31st, 2017
Presenter: Anshul BHarthan

anshul.bharthan@hpe.com

2

Agenda

Ø Why API’s

Ø STRUCTURED DATA - SCHEMA & DATA

Ø Introduction to Configuration APIs in 8.0

Ø Types and uses:

a) Configuration APIs (REST API)

b) Context APIs (NBAPIs)

Ø Configuration API Usage

Ø Navigating the UI

Ø API calls via CLI

Ø Other Config API Usage

3

Why API ?

Ø For 6.x versions, automation was not easy as CLI use to change over the time.
Ø WEBUI was not easily automatable.
Ø WebUI also used CLIs to communicate to the backend, which was hard coded and not

easily extensible.
Ø Show commands of the configuration used to be displayed from different apps in their

own proprietary formats
Ø These apps maintained the config presented to them in their own proprietary structures

and the show command output was not consistent across apps.
Ø So, if outputs changed over the course of time, the scripts also had to change, as these

outputs weren’t generated in a structured format.
Ø Therefore, using GET and SET in a structured format for all configuration was the main

requirement of implementing the JSON model.

4

STRUCTURED DATA - SCHEMA & DATA

Ø The main reasons for providing JSON interface is that all the config now can be GET
and SET using structured data APIs

Ø Structured data means that all the data is organized in a structure format (there can be
many structures) but all elements belonging to one data type follow the same data
model.

Ø This is achieved by separating schema from data.
Ø Schema is a data model representation (in JSON format), which tells the user as to how

to interpret the data. It lists complete detail on each and every parameter or token that a
particular config element can take – like it’s type (integer, character, string, IP address,
IPv6 address, MAC address etc), min and max values, default value (when the user
doesn’t give any value) etc.

Ø Data is the representation of the config state of the controller in JSON format. It
arranges the data in the same order as the schema and can be interpreted as schema
tells it to be interpreted.

CONFIGURATION API’S – REST API

6

What is REST and Why its popular?

What is REST ?

ØREpresentational State Transfer
Ø Can modify or view resources on the server without performing any server-side

operations
Ø Client requests a resource from the server and the server sends back the response
Ø REST is stateless
Ø Uniform interface
Ø Cacheable
Ø Secure

Why REST is popular?

ØAddress Scale
Ø Stateless
Ø Application development is not tied with server-side

development and vice versa
Ø Uses HTTP/HTTPS

7

STRUCTURED DATA - SCHEMA & DATA

ØResponse of REST calls will have a status code
ØSuccess Status code

Ø200 – OK – Everything is working
Ø201 – OK – New resource has been created
Ø204 – OK – The resource was successfully deleted
Ø304 – Not Modified – The client can use cached data

ØError status code:
Ø400 – Bad Request – The request was invalid or cannot be served.
Ø401 – Unauthorized – The request requires an user authentication
Ø403 – Forbidden – The server understood the request, but is refusing it or the
access is not allowed.
Ø404 – Not found – There is no resource behind the URI.
Ø422 – Unprocessable Entity – Should be used if the server cannot process the entity
Ø500 – Internal Server Error

8

Introduction to Configuration APIs in 8.0

JSON	model	provides	the	ability	to	make	GET	and	SET	calls	
using	structured	APIs

• CLI1

• GUI2

• API3

••AOS	6.x

••AOS	8.x

••AOS	6.x

9

1. Configuration APIs in 8.0

10

Configuration API Calls – GET Via GUI

11

Configuration API Calls – GET Via GUI

12

Configuration API Calls – GET Via GUI

13

Configuration API Calls – GET Via GUI

14

Configuration API Calls – GET Via GUI

15

Configuration API Calls – cURL commands via CLI

GET:
Now let’s check the same GET Option for an object (HT_SSID_PROF) using CLI
Before executing GET/SET commands, we need to login to the controller:

LOGIN:
[arubasupport@ANSHUL_CPPM_SRV ~]$curl --insecure -c "aruba-cookie" -d
"username=admin&password=aruba123" https://10.17.164.11:4343/v1/api/login
{"_global_result": {"status":"0", "status_str": "You've logged in successfully.", "UIDARUBA":"2bf89edb-
5208-48d9-b916-bb2fa759c26a"}}

LOGOUT:
[arubasupport@ANSHUL_CPPM_SRV ~]$ curl --insecure -c "aruba-cookie"
https://10.17.164.11:4343/v1/api/logout
{"_global_result": {"status":"0", "status_str": "You've been logged out successfully.", "UIDARUBA":"(null)"}}

v The --insecure (or -k) option can be used with the curl command if the certificate of the Mobility
Master cannot be validated.

16

Configuration API Calls – cURL commands via CLI

• Snippet from Slide#13:

curl -k -b "aruba-cookie" -X GET --header "Accept: application/json"
https://10.17.164.11/v1/configuration/object/ht_ssid_prof?config_path=%2Fmd&UIDARUBA=d0e5e419-ea8a-423e-9c5d-
1144b4b6cb30

{
"_data": {
"ht_ssid_prof": [
{
"profile-name": "default",

"_flags": {
"inherited": true,
"default": true
},
"ssid_ht_enable": {
"_pr; "_flags":

<OUTPUT SNIPPED>

17

Configuration API Calls –SET Via GUI

18

Configuration API Calls –SET Via GUI

19

Configuration API Calls –SET Via GUI

20

Configuration API Calls –SET Via GUI

21

Configuration API Calls – cURL commands via CLI

SET/POST:

Posting a Virtual AP Profile:

curl -k -b "aruba-cookie" -X POST --header "Content-Type: application/json" --header "Accept: application/json" -d "{
\"profile-name\": \"curl_test\",
\"aaa_prof\": {
\"profile-name\": \"default\“
},
\"vap_enable\": {},
\"vlan\": {
\"vlan\": \"1\“
},
\"forward_mode\": {
\"forward_mode\": \"tunnel\“
},
\"ssid_prof\": {
\"profile-name\": \"default\“
}
}" "https://10.17.164.11:4343/v1/configuration/object/virtual_ap?config_path=%2Fmd&UIDARUBA=db5f35eb-e3ed-4722-
8aee-db8ec6b4ccf7"

22

Configuration API Calls – cURL commands via CLI

OUTPUT:

{
"virtual_ap": {

"profile-name": "curl_test",
"aaa_prof": {
"profile-name": "default",

"_result": {
"status": 0,
"status_str": "“
}

},
"vap_enable": {

"_result": {
"status": 0,
"status_str": "“

}
...
…

<skipped mid data and continued to final section>

...
…
…
},

"_result": {
"status": 0,
"status_str": “

}
},
"_global_result": {

"status": 0,
"status_str": "Success",
"_pending": false

}

23

Configuration API Calls – cURL commands via CLI

Creating a new role using .TXT file:

We need to create a .txt file in linux and save it to the required path,

To create a .txt file,

[arubasupport@ANSHUL_CPPM_SRV ~]$ echo "{

\"rname\": \"string\",
\"role__acl\": {
\"acl_type\": \"eth\",
\"pname\": \"string\",
\"loc\": \"string\",
\"prio\": 0

},
\"role__reauth\": {
\"seconds\": true,
\"reauthperiod\": 0

}
}" > sample1.txt

We have ECHOED the ROLE INFO in a text file called sample1.txt

24

Configuration API Calls – cURL commands via CLI

Output:

[arubasupport@ANSHUL_CPPM_SRV ~]$ cat sample1.txt
{
"rname": "curltest",
"role__reauth": {
"seconds": true,
"reauthperiod": 20

},
"role__acl": [
{

"acl_type": "session",
"pname": "captiveportal“

},
{

"acl_type": "session",
"pname": "logon-control“

}
]

Here we can see the txt file is created

25

Configuration API Calls – cURL commands via CLI
curl -k -b "aruba-cookie" -X POST -i
"https://10.17.164.11/v1/configuration/object/role?config_path=%2Fmd&UIDARUBA=e27d21f7-0806-4021-8ae6-
e512152c8a82" -d @sample1.txt
HTTP/1.1 200 OK
Date: Mon, 13 Feb 2017 19:16:48 GMT
Server: Apache
Expires: 0
X-Frame-Options: SAMEORIGIN
X-UA-Compatible: IE=edge;IE=11;IE=10;IE=9
Expires: 0
Set-Cookie: SESSION=e27d21f7-0806-4021-8ae6-e512152c8a82; path=/;;Secure;
Content-Length: 719
Content-Type: application/json
{

"role": {
"rname": "curltest",
"role__reauth": {
"seconds": true,
"reauthperiod": 20,
"_result": {
……….

"_global_result": {
"status": 0,
"status_str": "Success",
"_pending": 1

}

26

Configuration API Calls – cURL commands via CLI

GET/POST information to lower hierarchal design:

Configuration node hierarchy

/md/Anshul-MD/local-device/00:1a:1e:02:1b:60 Device Aruba7220

curl -k -b "aruba-cookie" -X POST --header "Content-Type: application/json" --header "Accept: application/json"
"https://10.17.164.11/v1/configuration/object/write_memory?config_path=%2Fmd%2FAnshul-MD%2Flocal-
device%2F00%3A1a%3A1e%3A02%3A1b%3A60&UIDARUBA=420f39f2-b332-4c98-a0ab-341826102a23"
Write Memory:

curl -k -b "aruba-cookie" -X POST --header "Content-Type: application/json" --header "Accept: application/json"
"https://10.17.164.11/v1/configuration/object/write_memory?config_path=%2Fmd&UIDARUBA=aba2f089-80cb-42f9-9cab-
034e0ba4d57b"

{
"write_memory": {
"_result": {
"status": 0,

………..
"status": 0,
"status_str": "Success",
"_pending": false

}

27

Configuration API Calls – cURL commands via CLI

Using “show” command APIs:
SHOW AP DATABASE

HTTP/1.1 200 OK
Date: Wed, 15 Feb 2017 19:37:58 GMT
Server: Apache
Expires: 0
X-Frame-Options: SAMEORIGIN
X-UA-Compatible: IE=edge;IE=11;IE=10;IE=9
Expires: 0
Set-Cookie: SESSION=420f39f2-b332-4c98-a0ab-341826102a23;
path=/;;Secure;
Content-Length: 1240

Content-Type: application/json{
"AP Database": [

{
"AP Type": "225",
"Flags": null,
"Group": "New-Test-API",
"IP Address": "10.17.170.126",
"Name": "225-rep",

curl -k -b aruba-cookie -X GET -i
"https://10.17.164.11:4343/v1/configuration/showcommand?command=show+ap+database&UIDARUBA=420f39f2-b332-4c98
341826102a23" "Standby IP": "0.0.0.0",

"Status": "Up 8m:0s",
"Switch IP": "10.17.170.106"

},
{
"AP Type": "225",
"Flags": null,
"Group": "New-Test",
"IP Address": "10.17.170.125",
"Name": "225-test-MM",
"Standby IP": "0.0.0.0",
"Status": "Up 19d:11h:11m:1s",
"Switch IP": "10.17.170.106"

}
],
"_data": [
"Flags: U = Unprovisioned; N = Duplicate name; G = No such

group; L = Unlicensed",
<OUTPUT SNIPPED>

28

Configuration API Calls – cURL commands via CLI

Posting Multiple Objects in One-Go
curl -k -b "aruba-cookie" -X POST --header "Content-Type: application/json" --header "Accept: application/json" -d "{

\"aaa_prof\": {
\"profile-name\": \"aaa-curl\",
\"default_user_role\": {
\"role\": \"authenticated\“

},
\"dot1x_auth_profile\": {
\"profile-name\": \"default-psk\“

}
},
\"ssid_prof\": {
\"profile-name\": \"ssid-curl\",
\"ssid_enable\": {},
\"essid\": {
\"essid\": \"ess-curl\“

...
…
},
\"write_memory\": {}
}" "https://10.17.164.111:4343/v1/configuration/object/?config_path=%2Fmd&UIDARUBA=bb34c35e-d3ea-444e-ab61-
9b6b2e5e48f0"

CONTEXT API’S - NBAPI

30

2. Context APIs in 8.0

31

NorthBound API Basics

ØNB API is part of ALE solution that is being integrated with Mobility Master and the helper
process aids the JVM process in the AOS Services controller.

ØThis process receives the protobuf encoded ZMQ ALE feed consisting of Geofence, Location
and Presence updates and makes them available to NBAPI JVM process as well as
publishing the feed to AOS GSM.

ØTo configure nbapi_helper process to receive ZMQ feed from ALE, CLI can be used. The
maximum number of ALEs that can be configured is 5.

ØLC are also sending AMON feed to SC on port 9001. The JVM process grabs the AMON
feed coming in port 9001 and update the redis DB with all the context information.

ØThe Analytics and Location Engine supports two types of APIs:
a polling-based REST API, and
a publish/subscribe API based on Google Protobuf and ZeroMQ.

32

NB API Work Flow

33

NBAPI Helper Process

Ø NBAPI	helper	process	running	on	Services	Controller	is	a	multi-threaded	process	handling	
following	tasks.	

• Listening	to	ZMQ	Location,	Presence	and	Geo-fence	updates	from	ALE	VM.
• Writing	the	above	messages	to	GSM.
• Getting	Controller	information	from	GSM	and	updates	of	configuration	file	regulating	the	NBAPI	

java	process.
• NBAPI-helper	process	sends	out	a	ZMQ	feed.	This	feed	contains	context	information	like	AP,	

VAP,	etc
• By	default,	ZMQ	feed	or	REST	API	does	not	contain	location,	geofence and	presence	info.	These	

are	only	updated	in	the	GSM.
• If	location,	presence	and	geo-fence	information	is	required,	the	customer	will	have	to	subscribe	

to	ZMQ	feed	from	individual	ALEs.	

34

Configuration

Ø ale-configuration
ale_sta_associated
anonymize
ip address 10.17.164.26 username admin password Aruba@p1
nbapi_publish

Ø The following command is used to configure an ALE IP address with login
information. A maximum of five ALE IP addresses can be configured on the
Mobility Master:

(host) [mynode] (config) #ale-configuration
(host) [mynode] (config-submode) # ip <IP address> username <username>
password <password>

35

Configuration (Contd.)

Ø The following command is used to configure anonymization on the Mobility
Master REST API:

(host) [mynode] (config) #ale-configuration
(host) [mynode] (config-submode) #anonymize

Ø The following command is used to enable REST APIs on the Mobility Master
to publish data available via ZMQ, including station, virtual AP, AP, radio,
RSSI, visibility record, destination. By default, this parameter is false.

(host) [mynode] (config) #ale-configuration
(host) [mynode] (config-submode) #nbapi_publish

THANK YOU!

