

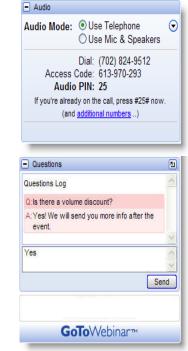
CLUSTER MANAGER

Technical Climb Webinar 10:00 GMT | 11:00 CET | 13:00 GST May 30th, 2017

2014

Presenter: Saravanan Moorthy

saravanan.moorthy@hpe.com



Welcome to the Technical Climb Webinar

Listen to this webinar using the computer audio broadcasting or dial in by phone.

The dial in number can be found in the audio panel, click additional numbers to view local dial in numbers.

If you experience any difficulties accessing the webinar contact us using the questions panel.

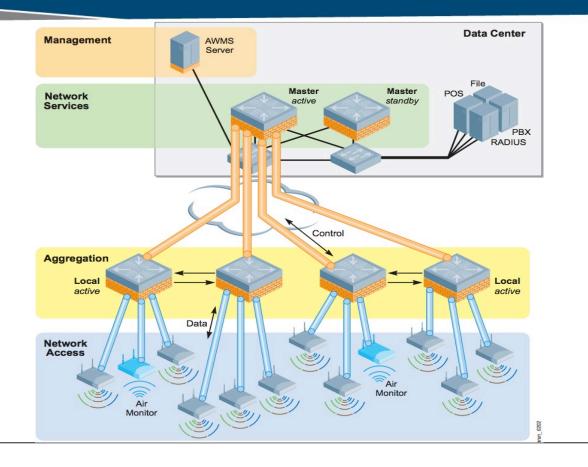
Housekeeping

This webinar will be recorded

All lines will be muted during the webinar

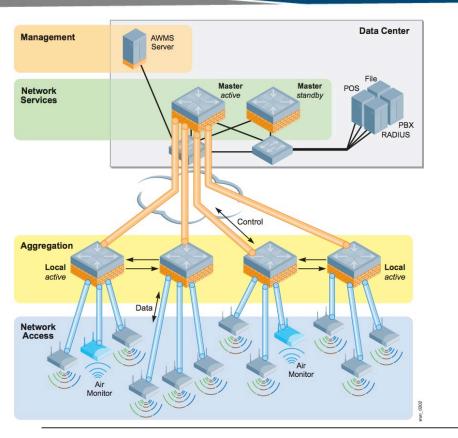
How can you ask questions? Use the question panel on your screen

The recorded presentation will be posted on Arubapedia for Partners (https://arubapedia.arubanetworks.com/afp/)

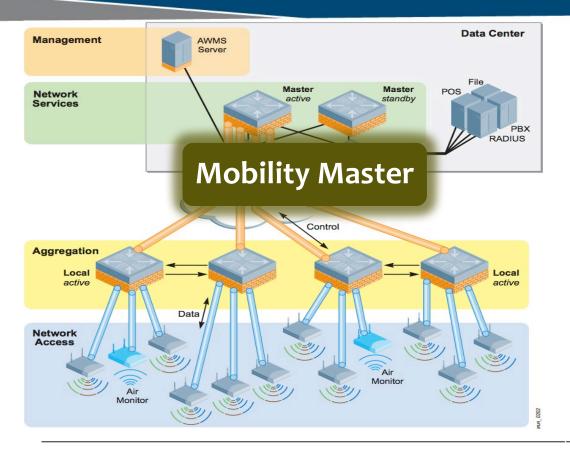

CLUSTER MANAGER

Agenda

- Objectives
- Clustering Highlights
- Cluster Leader
- Cluster Roles
- Cluster Hitless Failover
- Cluster Load Balancing
- Cluster Manual/CLI (re)assignment of AP (and AP-group) to any controller

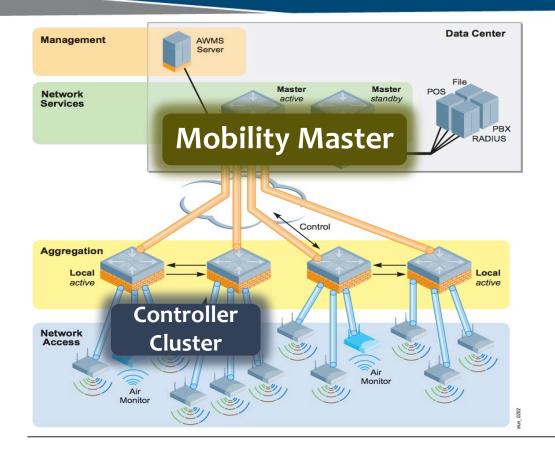

Aruba's MOVE Architecture

HA/Fast-Failover:


- The high availability: Fast Failover feature supports APs in campus mode using tunnel or decrypt-tunnel forwarding modes, but does not support campus APs in bridge mode.
- This feature is not supported on remote APs and mesh APs in any mode.
- With 8 consecutive heartbeat misses (default), AP will detect that the Active controller is no longer available and will failover to Standby controller.
- AP will deauth clients before failover to ensure that client will come up properly on backup controller.
- AP's standby tunnel will become active without having to rebootstrap. The SSIDs remains up during failover.
- Clients will reconnect to SSID, authenticate and start passing traffic again.
- Once primary controller is back up, APs will form standby tunnels to it. If preemption for HA is enabled. APs will move back to primary controller after "LMS hold down" time configured in AP system profile

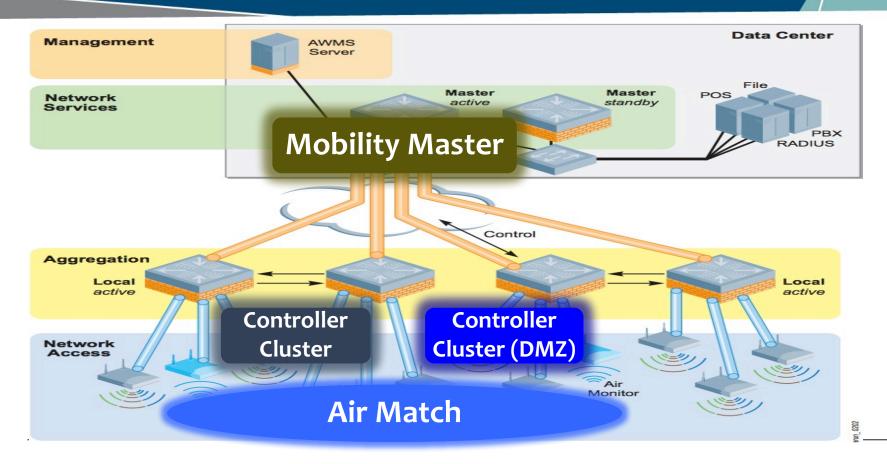
What's New in ArubaOS 8.0?

- Ideal for Control Plane Functions
- Not in the path of traffic
- Often need more Memory & more Processing Capacity
- Current Form Factor
 - Same as Locals
 - Optimized for Packet Fwd'ing
 - Limited CPU & Memory
 - Limited Scale


In ArubaOS 8.0

Mobility Master

- Runs on X86 (VM in 8.0 Hardware Appliance in post 8.0 releases)
- Scales vertically as needed
- Flexible CPU/Memory/Disk allocation
- Ideal for Control Plane functions
- No AP Termination
- Software Only option
- Economical Solution for Customers


In ArubaOS 8.0:

Controller Cluster

- Cluster of Controllers performing Control & Data Plane Functions
- Cluster up to 12 Nodes
- Auto Load balancing of APs and Stations
- 100% Redundancy
- Active Active Mode of Operations
- High Value Sessions are sync'ed
- Sub-Second Switchover

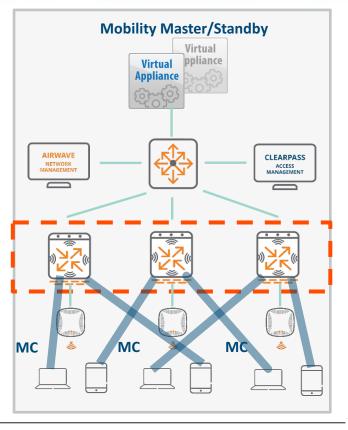
In ArubaOS 8.0:

Clustering for Mission Critical Networks

1

Seamless Campus Roaming

Clients stay anchored to a single MD when roaming across controllers

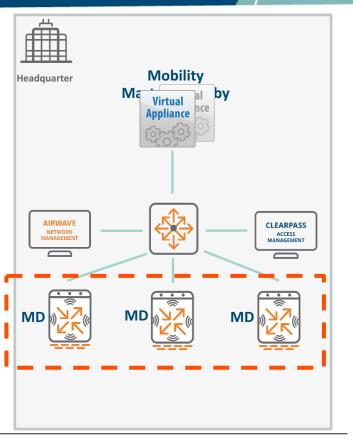

Hitless Client Failover User traffic uninterrupted upon cluster member failure

3

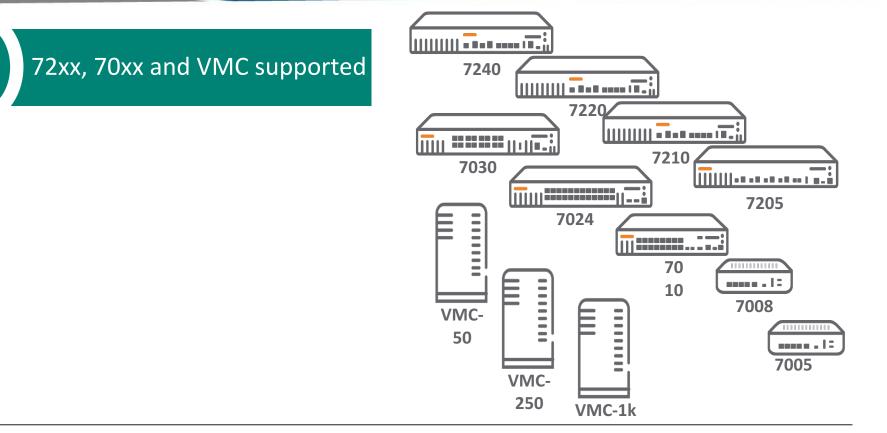
2

Client Load Balancing

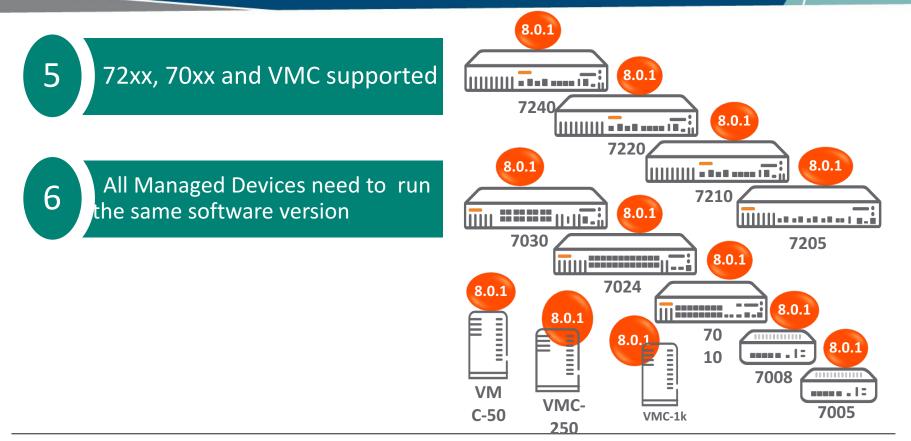
Users automatically load balanced across cluster members

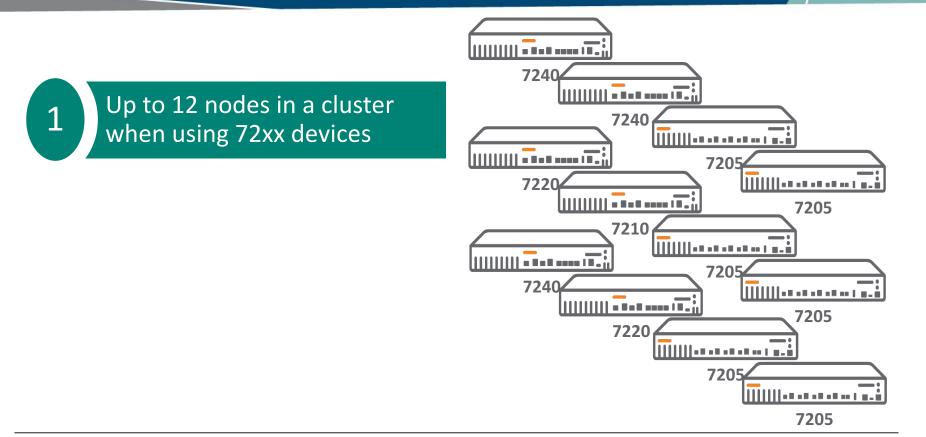


CLUSTERING HIGHLIGHTS

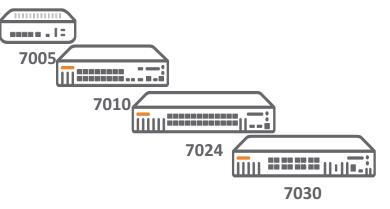


Highlights





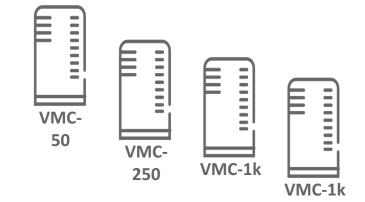
Highlights


Cluster Capacity:

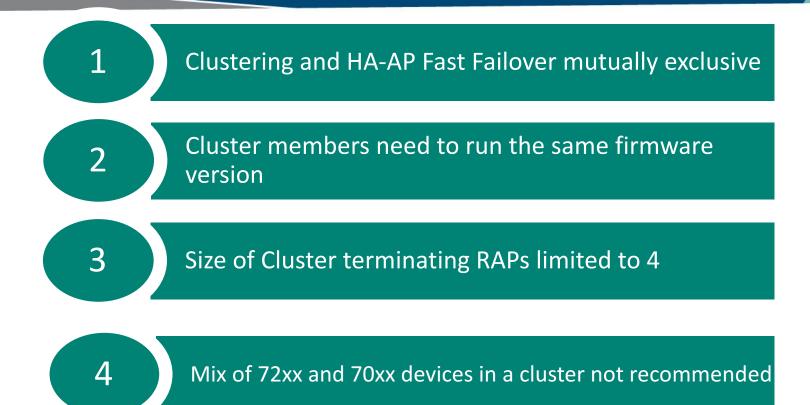
Cluster Capacity:

Cluster Capacity:

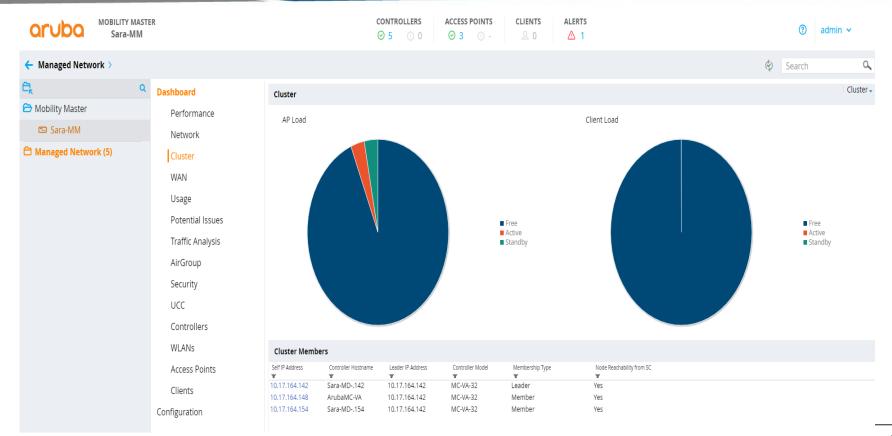
1


2

3

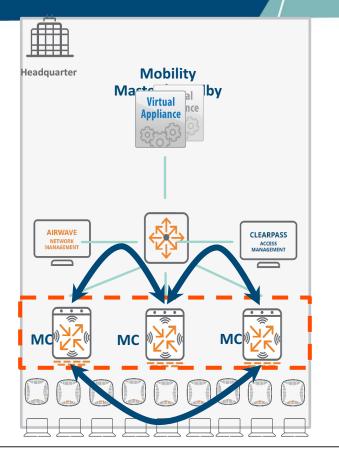

Up to 12 nodes in a cluster when using 72xx devices

Up to 4 nodes in a cluster when using 70xx devices


Up to 4 nodes in a cluster when using VMC devices

Key Considerations:

Cluster Dashboard:



CLUSTER LEADER

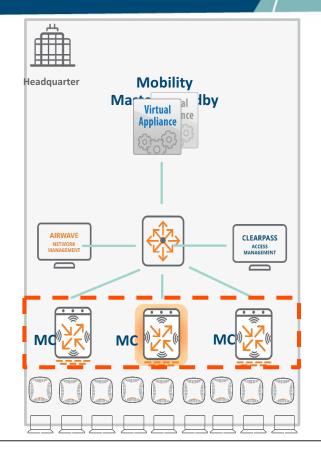
How is a Cluster Leader Elected?

How is a Cluster Leader Elected?

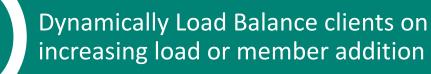
Hello Messages exchanged during Cluster Formation

1

2

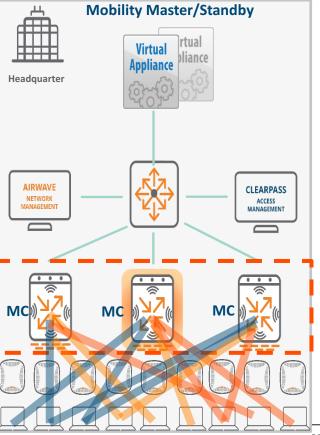

3

4


<u>Cluster Leader Election</u> Defined by highest effective priority derived from Configured Priority, Platform Value & MAC

All controllers end up in fully meshed IPSEC tunnels between each pair

Cluster can be formed over a L2 (recommended) or L3 Network


What role does a Cluster Leader play?

1

2

Identify Standby MDs for Clients and APs to ensure hitless failover

Cluster Connection Types

L2- Connected Cluster members sharing same VLANs

Cluster Info Table

1

2

Type	IPv4 Address	Priority	Connection-Type	STATUS											
				-											
self	10.29.163.2	200	N/A	CONNECTED	(Leader)										
peer	10.29.163.3	128	L2-Connected	CONNECTED	(Member,	last	HBT	RSP	38ms	ago,	RTD	= 0	.490	ms)	

VLAN Probing:

- CM process will send a broadcast packet, with source mac as a special mac and destination mac as FF:FF:FF:FF:FF:FF; with vlan set to one of the vlans defined on the controller.
- If the cluster member is L2 connected then this broadcast packet will be received by it and an entry with the special mac corresponding to that vlan will be created in the bridge table.
- The CM will repeat the broadcast for every vlan defined.
- If the bridge table on the peer controller (i.e. cluster member) has entries for this special mac corresponding to every vlan then the two peers are said to be L2-connected, in which case the state of the cluster member will be moved to L2-CONNECTED.

CLUSTER ROLES

Two Managed Devices (MD) Roles

Redundancy

3

4

Standby-AAC (S-AAC)

Standby-UAC (S-UAC)

Terminology

• AAC –

- AP Anchor Controller, a role given to a controller from individual AP perspective.
- AAC handles all the management functions for a given AP and its radios. The AP is assigned to a given AAC through the existing mechanism of LMS-IP/Backup-LMS-IP configuration for the given AP in the AP-Group profile.

• UAC

- User Anchor Controller, a role given to a controller from individual User perspective.
- UAC handles all the wireless client traffic, including association/disassociation notification, authentication, and all the unicast traffic between controller and the client.
- The purpose of UAC is to fix the controller so that when wireless client roams between APs, the controller remains the same within the cluster.
- UAC assignment spreads the load of users among available controllers in the cluster

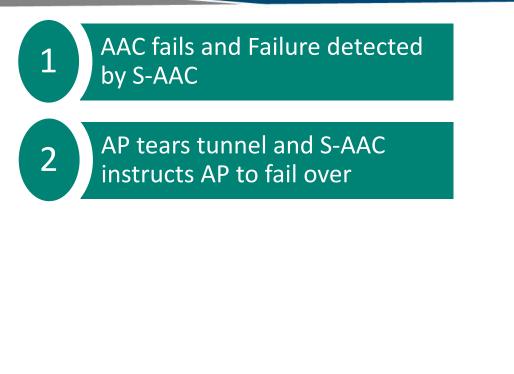
Terminology

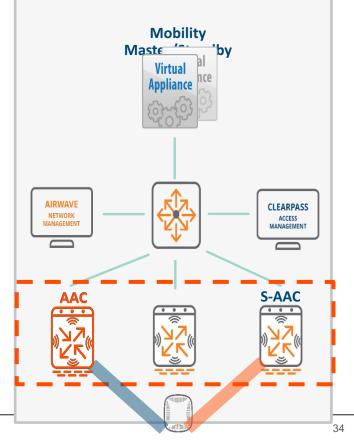
• S-AAC –

- Standby Controller from the AP perspective
- AP fails over to this controller on Active AAC down


• S-UAC

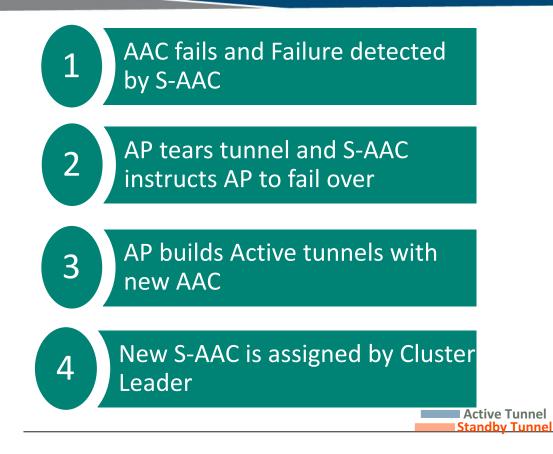
- Standby Controller from the User perspective
- User fails over to this controllers on Active UAC down

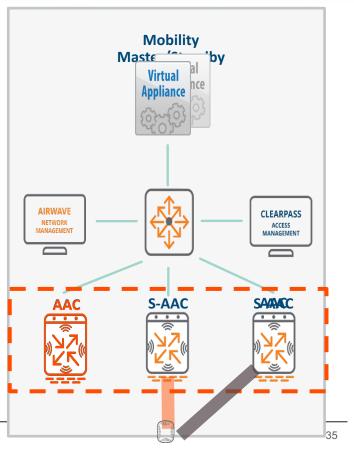

AP ANCHOR CONTROLLER (AAC)



AP Anchor Controller (AAC)

AAC Failover

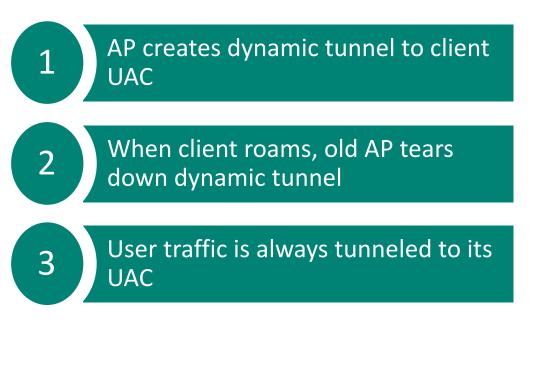


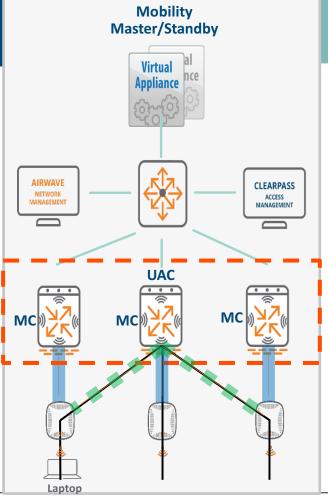


Active Tunnel

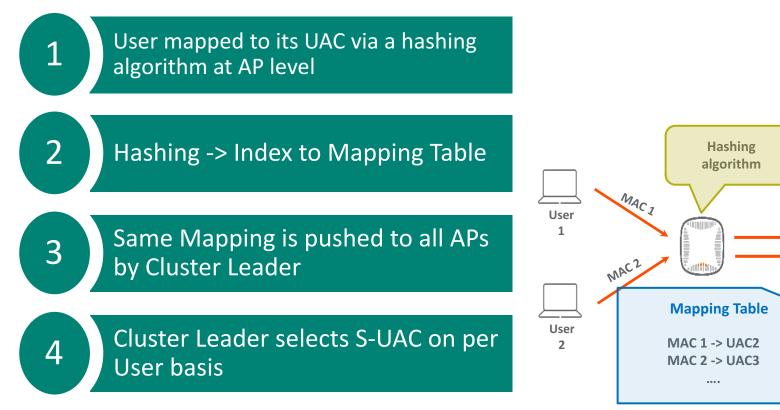
Standby Tunnel

AAC Failover





USER ANCHOR CONTROLLER (UAC)



User Anchor Controller (UAC)

How does a User remain anchored to a single controller (UAC)?

UAC2

UAC3

CLI Output:

(Sara-MD-.142) #show user

This operation can take Users	a while deper	nding on numb	per of 1	users. Plea	se be pat	ient										
 IP	MAC		ame		Age(d:h:m) Auth	VPN link	AP name		Roaming	Essid/Bssid/Phy	Profile	Forward mode	Туре	Host Name	User :
 10.17.164.3 fe80::c2ee:fbff:fe52:699	c0:ee:fb:5 5 c0:ee:fb:5	52:69:95			00:00:01 00:00:01						Aruba-test/40:e3:d6:5e:49:b0/a-VHT Aruba-test/40:e3:d6:5e:49:b0/a-VHT					WIREL
User Entries: 2/2 Curr/Cum Alloc:4/11 Fre (Sara-MD142) #show sta		AllocErr:0 Fi	reeErr:	0												
Station Entry																
MAC Name		Age(d:h:m)	Auth	AP name		Essid	Phy	Remote	Profile	User Ty						
c0:ee:fb:52:69:95	logon	00:00:01	No	40:e3:d6:	cd:e4:9a			r No	Aruba-tes							
Station Entries: 1																

(Sara-M	D142) #show aaa cl	luster essid-a	all users	
Active (Users for ESSID : An	ruba-test		
BUCKET	MAC	IP	Active UAC	Standby UAC
	c0:ee:fb:52:69:95		10.17.164.142	10.17.164.154

Type LESS LESS

CLI Output for Bucketmap:

(Sara-MD-.142) #show ap remote debug bucketmap stm ap-name 40:e3:d6:cd:e4:9a

Bucket map for essid Aruba-test

tem		lue																														
ssid		uba	-tes	st																												
AC 0		.17			12	(Up																										
AC 1		.17																														
JAC 2		.17																														
urrent Map [0-31]								01	02	00	01	02	00	01	02	00	01	02	02	00	01	00	01	02	00	01	02	00	01	02	00	0
Surrent Map [32-63]																			02													
Surrent Map [64-95]																			01													
urrent Map [96-127]																			00													
urrent Map [128-159]	01	00	01	02	00	01	02	00	01	02	02	00	01	02	00	01	02	00	01	02	00	01	00	01	02	02	00	01	02	00	01	0
urrent Map [160-191]	00	01	02	00	01	02	00	01	00	01	02	02	00	01	00	02	01	02	00	01	02	00	01	02	00	01	00	01	02	02	00	0
urrent Map [192-223]	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	0
Current Map [224-255]	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	0
ctive Map [0-31]	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	02	00	01	00	01	02	00	01	02	00	01	02	00	0
ctive Map [32-63]																			02													
ctive Map [64-95]																			01													
ctive Map [96-127]																			00													
ctive Map [128-159]	01	00	01	02	00	01	02	00	01	02	02	00	01	02	00	01	02	00	01	02	00	01	00	01	02	02	00	01	02	00	01	0
ctive Map [160-191]	00	01	02	00	01	02	00	01	00	01	02	02	00	01	00	02	01	02	00	01	02	00	01	02	00	01	00	01	02	02	00	0
ctive Map [192-223]	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	0
ctive Map [224-255]	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	02	00	01	
tandby Map [0-31]	01	00	00	02	02	01	01	00	00	02	02	01	01	00	00	02	02	01	00	02	00	01	02	01	01	00	00	02	02	01	01	
tandby Map [32-63]	00	02	02	01	00	02	00	01	02	01	01	00	00	02	02	01	01	00	00	01	02	02	00	02	00	01	02	01	01	00	00	
tandby Map [64-95]																			02													
tandby Map [96-127]																			01													
tandby Map [128-159]																			02													
tandby Map [160-191]																			01													
tandby Map [192-223]																			00													
tandby Map [224-255]	02	01	01	00	00	02	02	01	01	00	00	02	02	01	01	00	00	02	02	01	01	00	00	02	02	01	01	00	00	02	02	0
2 Connectedness [0-31]																																
2 Connectedness [32-63]																																
2 Connectedness [64-95]																			1 1													
2 Connectedness [96-127]																																
2 Connectedness [128-159]																																
2 Connectedness [160-191]																																
2 Connectedness [192-223]																																
2 Connectedness [224-255]	1	1 1	1 :	1 1	1	1 1	1 :	1 1	1 :	1 1	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1	1 1											
urrent Map Timestamp Wed M															nur	n=8	Rea	aso	n=Br	ap	Mea	sag	je 1	frig	ggei	r=Ne	orm	al I	Bmar			
ucket Map Rovd Timestamp W	led 1	May	24	12	:31	:57	20:	17	(23)	h:47	7m : :	113	age	∍)																		
adio_bg 1, radio_a 1:																																
Sucket Index 174, list 0xe5		8:																														
sta:c0:e <u>e</u> :fb:52:69:	:95																															
Sara-MD142) #																																

(Sara-MD-.142) #

CLI Output for Bucketmap:

(Sara-MD-.142) #show aaa cluster essid-all bucketmap

Bucket map for Aruba-test, Rcvd at : Wed May 24 12:31:56 2017

Item	Value
Issid	Aruba-test
JACO	10.17.164.142
JAC1	10.17.164.148
JAC2	10.17.164.154
Active Map[0-31]	00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 02 00 01 00 01 02 00 01 02 00 01 02 00 01
Active Map[32-63]	02 00 01 02 02 00 01 00 01 02 00 01 02 00 01 02 00 01 02 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00
Active Map[64-95]	01 02 00 01 02 02 00 01 02 00 01 00 01 02 00 01 02 00 01 02 00 01 02 02 00 01 02 00 01 02 00 01 00 01 02
Active Map[96-127]	00 01 02 00 01 02 02 00 01 02 00 01 02 00 01 00 01 02 00 01 02 00 01 02 02 00 01 02 00 01 02 00
Active Map[128-159]	01 00 01 02 00 01 02 00 01 02 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 02 00 01 02 00 01 02
Active Map[160-191]	00 01 02 00 01 02 00 01 00 01 02 02 00 01 00 02 01 02 00 01 02 00 01 02 00 01 02 00 01 02 02 00 01
Active Map[192-223]	02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00
Active Map[224-255]	01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02 00 01 02
Standby Map[0-31]	01 00 00 02 02 01 01 00 00 02 02 01 01 00 00 02 02 01 00 02 00 01 02 01 01 00 00 02 02 01 01 00
Standby Map[32-63]	00 02 02 01 00 02 00 01 02 01 01 00 00 02 02 01 01 00 00 01 02 02 00 02 00 01 02 01 01 00 00 02
Standby Map[64-95]	02 01 01 00 00 01 02 02 00 02 00 01 02 01 01 00 00 02 02 01 01 00 00 01 02 02 00 02 00 01 02 01
Standby Map[96-127]	01 00 00 02 02 01 00 02 02 01 01 00 00 02 00 01 02 01 01 00 00 02 02 01 00 02 02 01 01 00 00 02
Standby Map[128-159]	00 01 02 01 01 00 00 02 02 01 00 02 02 01 01 00 00 02 02 01 01 00 01 00 01 02 02 02 00 02 02 01
Standby Map[160-191]	01 00 00 02 02 01 01 00 01 00 00 01 02 02 02 00 02 01 01 00 00 02 02 01 01 00 00 01 02 02 02
Standby Map[192-223]	00 02 02 01 01 00 00 02 02 01 01 00 00 02 02 01 01 00 00 02 02 01 01 00 00 02 02 01 01 00 00 02
Standby Map[224-255]	02 01 01 00 00 02 02 01 01 00 00 02 02 01 01 00 00 02 02 01 01 00 00 02 02 01 01 00 00 02 02 01 01 00 00 02 02 01
L2connect[0-31]	
2connect[32-63]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2connect[64-95]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2connect[96-127]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2connect[128-159]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
L2connect[160-191]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2connect[192-223]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2connect [224-255]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[sActive[0-31]	1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0
[sActive[32-63]	0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1
[sActive[64-95]	0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0
[sActive[96-127]	
[sActive[128-159]	0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0
[sActive[160-191]	1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0
[sActive[192-223]	0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
[sActive[224-255]	
(Sara-MD142) #	

CLUSTER CONFIGURATION

Configuration:

Creating a new cluster group profile (should be done on the MM) (MM) [cluster2] (config) #lc-cluster group-profile vmc2 (MM) ^[cluster2] (Classic Controller Cluster Profile "vmc2") #controller 10.29.161.98 (MM) ^[cluster2] (Classic Controller Cluster Profile "vmc2") #controller 10.29.161.251

Registering to a cluster group (should be done on the MM with the managed node as its path)

(MM) ^[cluster2] (config) #cd /md/cluster2/00:0c:29:bc:2a:96(MM) ^[00:0c:29:bc:2a:96] (config) #lc-cluster group-membership vmc2

CLUSTER HITLESS FAILOVER

Cluster Hitless Failover

TWO CONDITIONS

1	Redundar	ncy Mod	e enabled					
2	L2-Connect Cluster memb		same VLANs					
Clusto Redund Active Stand Unbala	luster1) #show er Enabled, Pro dancy Mode On e Client Rebala by Client Rebal ance Threshold er Info Table	ofile Name ince Thresh ance Thres	nold = 50%	ip				
Туре	IPv4 Address	Priority	Connection-Type	STATUS				
self	10.70.211.11			CONNECTED				
peer peer	10.70.211.12 10.70.211.13		L2-Connected L2-Connected			_		

0.000 ms) 0.000 ms)

Cluster Hitless Failover

How is Hitless Failover achieved?

Client State sync'ed to S-UAC

Sta, user, L2_user, L3-user, key_cache, pmk_cache,etc..

High-Value sessions sync'ed to S-UAC

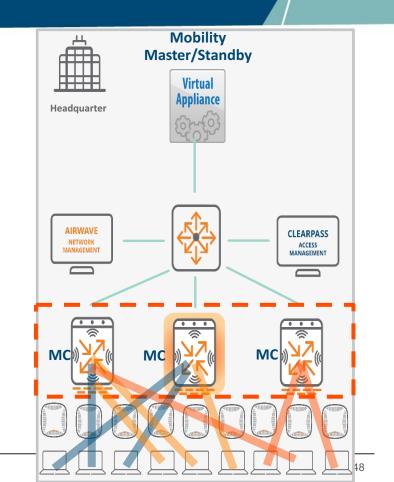
FTP, Telnet, SSH, DPI qualified sessions..

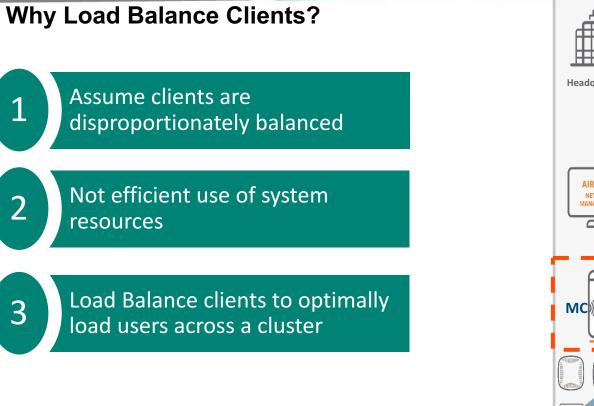
1

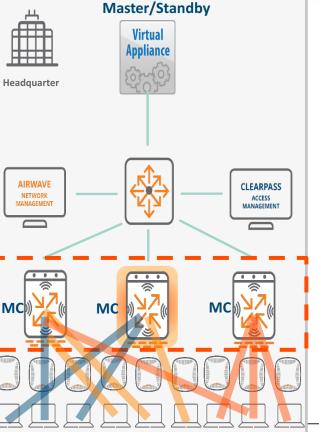
2

NO Client de-Auth w/ failover to S-UAC

ormant Mac Ha								
IP	MAC	l2role	l3role	vlan	Essid/Bssid/Tunnelid		Counts(User/PTK)	Active UAC IP
0.70.215.248	5c:f9:38:94:55:5e	authenticated		215	secure-acme/18:64:72:40:	bb:1d/0x1000a	2/1	10.70.211.13
0.70.215.245	5c:f9:38:97:5c:9c	authenticated		215	secure-acme/18:64:72:40:	bb:1d/0x1000a	1/1	10.70.211.13


CLUSTER LOAD BALANCING



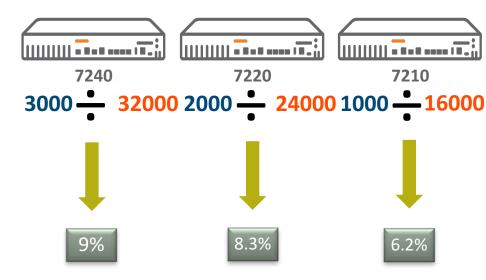

Why Load Balance Clients?

Assume clients are disproportionately balanced

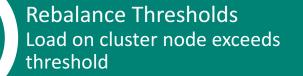
2 Not efficient use of system resources

How does Load on a controller calculated?

Identify the controller model


Get current client count on controllers

3	Get total client capacity for
2	controller



Based on the load and additional triggers load balancing takes place

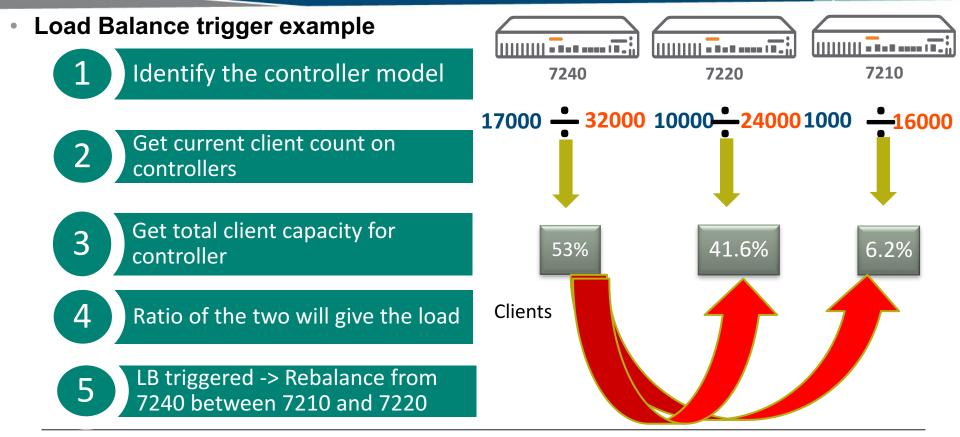
How is the Load Balancing triggered?

Active Client Rebalance Threshold (50%)

Standby Client Rebalance Threshold (75%)

1

One Rebalance Threshold and the Unbalance Threshold both exceeded


Functionality

- As cluster members can be of different controller models, the LB trigger is based on individual node's current load and not the combined cluster load.
- Admin can control when the LB gets triggered by configuring the threshold parameters in the cluster profile.
 - Active Client Rebalance Threshold:50% (default)
 (Will redistribute active client load when active load on any cluster node is beyond this configured percentage)
 - Standby Client Rebalance Threshold:75% (default)
 (Will redistribute standby client load when standby load on any cluster node is beyond this configured percentage. Applicable only when redundancy is ON)
 - Unbalance Threshold:5% (default)

(The minimum difference in load percentage between max loaded cluster node and min loaded cluster node to let load balancing algorithm kick in)

Functionality

- The LB process flow is as follows
 - Trigger \rightarrow Evaluate \rightarrow Rebalance
- LB is triggered only when <u>BOTH</u> load balance threshold and unbalance threshold are met.
- "Rebalance" is the process of moving the station (s) from one node to another. This adjustment is done by changing the UAC index in the bucket map for the affected bucket on a per ESS-bucket.
- The LB action of moving the clients across nodes to maintain balance will be hitless.
- When cluster redundancy is enabled, the LB will additionally trigger and rebalance the standby STA load, just like the active STA load.

Example case studies

- active-client-rebalance-threshold 10%
- unbalance-threshold 5%

Case1:

- 7240 (A): 3,000 clients
- 7220 (B): 2,000 clients

Result: No LB. Because neither threshold is met! (A is 9%, B is 8%)

Case2:

- 7240 (A): 4,000 clients
- 7220 (B): 700 clients

Result: <u>LB is triggered</u>. (A is 12.5%, B is 2.8%, and unbalance is > 5%)

Case3:

- 7240 (A): 500 clients
- 7220 (B): 0 clients (node just rebooted)

Result: No LB. Because neither threshold is met! (A is 1.5% and unbalance is < 5%)

LB Internals

- Cluster redundancy disabled
 - > LB uses the standby-UAC designation to alter the replication from none to a target new controller first.
 - Once replication is done, CM will re-publish the bucket map to change the active-UAC and then clear the standby-UAC of the bucket.
 - The active-UAC designation of a bucket causes AP to switch clients to the new UAC, which already receives the data as a "temporary standby", so that client can switch to new UAC with minimal disruption.
- Cluster redundancy enabled.
 - LB will set the standby-UAC to the new UAC. Once completed, LB will swap the active-UAC and standby-UAC in the bucket map.
 - > Once done, the new UAC will be the active one, and the original active UAC will be the standby.
 - It is up to Load Balancer to decide whether to transition back and use the original standby-UAC for the switched bucket or not, depending on the overall load distribution target that Load Balancer concludes.

Configuration

Load balancing is enabled by default when cluster is configured.

- Aruba7210) #show lc-cluster group-profile testlb

Redundancy:No L2-Connected:No Active Client Rebalance Threshold:50% Standby Client Rebalance Threshold:75% Unbalance Threshold:5%

The threshold parameters can be configured in cluster group profile from MM

(ArubaSC) [md] (config) #lc-cluster group-profile Clusterlb (ArubaSC) ^[md] (Classic Controller Cluster Profile "Clusterlb") #active-client-rebalance-threshold 60 (ArubaSC) ^[md] (Classic Controller Cluster Profile "Clusterlb") #standby-client-rebalance-threshold 70 (ArubaSC) ^[md] (Classic Controller Cluster Profile "Clusterlb") #unbalance-threshold 10

Questions ?

THANK YOU!

