Per Port Tunneled Node

Contents

Per Port Tunneled Node1
Purpose2
What is Per Port Tunneled Node (PPTN) ?
What is it used for?4
Switch support4
PPTN Feature limitations in 16.04.0085
Global:5
Per port restrictions:
Best Practices
Test network
Test Scenario
Software versions7
Controller7
Switch7
Controller Configuration7
Controller show commands8
Verify the profile information8
Show AAA profile8
Show AAA profile8
Show VLAN9
Show user role9
Show rights10
Tunneled node show commands11
show tunneled-node config11
show tunneled-node state12
Switch config12
Switch Show commands12
Appendix13
Controller screenshots13
Another Cli example14

Configuration commands to the controller.	14
Controller show commands	15
Additional configuration commands to the switch	15
AppRF data for tunneled node	15

Figure 3: PPTN can provide centralised policy enforcement and Visibility	2
Figure 1: Per Port Tunneled Node	3
Figure 2:GRE encapsulation	4
Figure 4: Test network	6
Figure 5: PPTN switch uses another license	13
Figure 6: AppRF users	16
Figure 7: AppRF breakdown by role	16

Purpose

The purpose of this document is to provide configuration and troubleshooting information on Per Port Tunneled Node (sic). There are a number of very good references but they tend to include more complex interactions with AAA integration and policy enforcement through Clearpass. This document focuses on the most basic configuration on the switch and controller. Hopefully this provides clarity on the underlying technology and how to troubleshoot it.

Figure 1: PPTN can provide centralised policy enforcement and Visibility

What is Per Port Tunneled Node (PPTN) ?

Per Port Tunneled node feature encapsulates incoming packets from end-hosts in GRE and forwards them to a Mobility Controller for additional processing. The Mobility Controller strips the GRE header and processes the packet for authentication and stateful firewall, which enables centralized security policy, authentication, and access control. The tunneled node feature is enabled on a per-port basis. Any traffic coming from non tunneled node interfaces is forwarded without being tunneled to a Mobility Controller. BPDUs and LLDP traffic is terminated at the switch and not tunneled.

Note: Ensure that the Tunneled-Node VLAN is present and enabled on both the controller and switch.

Note: The switch will establish a single GRE tunnel between it and a Mobility Controller for Tunneled Node operation. However from the perspective of the Mobility Controller, each Tunneled Node port will appear as an individual port.

Figure 2: Per Port Tunneled Node

- When a port is configured for tunneled-node, ingress packets are encapsulated in an IP GRE frame which is then forwarded to the controller
- A unique GRE Key is needed 1 to 1 Mapping:
 - 1. For the controller to uniquely identify GRE packet source port
 - 2. For the switch to send de-capsulated packet to particular port

As the traffic is encapsulated in a GRE tunnel so Jumbo frames should be enabled through the network and on the transport vlan.

Network			Tunnel	ed Node								Mobilit	Controller
	msg1: pkt	from port	p1										
MAC-D	A MAC-SA	VLAN- TAG	Payload				msg	2: pkt to c	ontroller				
				Encap- MAC- DA	Encap- MAC-SA	Encap- VLAN	0x800	Encap- IP-HDR	GRE KEYP1	MAC-DA	MAC-SA	VLAN- TAG	Payload
							msg3:	pkt from	controller				
				Encap- MAC- DA	Encap- MAC-SA	Encap- VLAN	0x800	Encap- IP-HDR	GRE KEYP2	MAC-DA	MAC-SA	VLAN- TAG	Payload
MAC-	DA MAC-SA	VLAN- TAG	Payload										
				i									
1													I

Figure 3:GRE encapsulation

What is it used for?

Per-Port Tunneled-Node allows using the same enforcement options for wired and wireless clients. This includes stateful session processing, deep packet inspection, URL filtering and bandwidth contracts

- Tunneled-node provides traffic separation across a layer 3 network. This could be used to present user traffic to a specific zone on the firewall. For example CCTV or POS traffic could carried across a layer 3 campus core. This is much simpler alternative to VRF or MPLS
- Alternative to vlan creation for branch Does not require any interaction or coordination with Telco provider to segment office networks with all traffic terminated on a branch Controller acting as branch router and security Gateway.
- Provides a simple overlay for new use case like CCTV deployment
- With Clearpass integration can provide "colorless" (sic) ports for public spaces
- Can provide an aggregation layer for basic layer 2 switches to provide advanced traffic control and centralised policy driven Network Access

Switch support

PPTN is supported on:

- 5400R switch series with v2 and v3 modules
- 3810 switch series
- 2920 switch series
- 2930 switch series

• 3800 switch series

PPTN Feature limitations in 16.04.008

Global:

- Mesh
- QinQ
- Distributed Trunking

The following feature **are** supported on V3 platforms (2930,3810 and 5400R in V3 only mode).

- p multicast-routing
- Openflow
- VXLAN
- Service insertion
- IGMP lookup mode IP

Per port restrictions:

- ISC port
- Port is member of LAG
- Port security
- AAA (This would happen at the controller)
- Ipv4 address on vlan
- Ipv6 address on vlan
- Dipld
- Filter multicast and protocol (Happens at controller)
- Virus throttling

The following features **are** supported on V3 platforms (2930,3810 and 5400R in V3 only mode).

- MLD on VLAN with PPTN ports
- IGMP on with PPTN ports

Best Practices

Ensure that the wireless controller can handle the necessary bandwidth and number of tunnels (Max physical ports that can be used as tunnels is listed below).

Max number of tunneled node ports

- 5400R [non-stacked] = 288
- 5400R [stacked] = 576
- 3810 [stacked] = 520
- 2930F [4mbr] = 208
- 2920[stacked] = 208

- 3800[stacked] = 520
- 2930M[10 mbr stack] = 520
- Ensure that the Tunneled-Node VLAN is present and enabled on both the controller and switch.
- Ensure that enough licenses are on the controller to handle the tunneled-node ports within the network (1 switch with Tunneled-Node ports enabled = 1 license on controller). Will need PEFNG license if using firewall functionality on controller

Test network

Figure 4: Test network

Test Scenario

In the above test scenario there are two PPTN transit vlans created to provide traffic separation between the Blue network and the Orange network. The laptop in port 6 (blue) is isolated from the laptop in port 7 (Orange) and they are carried across the layer 3 core to the central controller where DPI and Policy enforcement is performed. The Blue Laptop ends up in Vlan 102 and the Orange laptop in vlan 101. These vlans are only configured on the

controller, they do not exist in the access network. The PPTN transit vlans 4013 and 4014 are local to the lab switch and the 7005 controller and again they are not configured on the core 2930 switch. They just provide an encapsulation ID

Although this simplified test scenario only delivers Layer 2 transport to separate VLANs it is possible to provide advanced traffic filtering on the user traffic. The show commands in this document indicate what controls and traffic visibility is available

Software versions

Controller

(rbhome7005) *[mynode] #show version

Aruba Operating System Software.
ArubaOS (MODEL: Aruba7005), Version 8.2.0.0-beta
Website: http://www.arubanetworks.com
(c) Copyright 2017 Hewlett Packard Enterprise Development LP.
Compiled on 2017-08-24 at 09:09:20 UTC (build 61118) by p4build

ROM: System Bootstrap, Version CPBoot 1.0.2.0 (build 46859) Built: 2014-10-31 10:10:57 Built by: p4build@re_client_46859

Switch uptime is 8 hours 52 minutes 22 seconds Reboot Cause: User reboot (Intent:cause:register 78:86:0:2c) Supervisor Card Processor (XLP208 Rev B0 (Secure Boot), 500 MHz) with 3797M bytes of memory. 32K bytes of non-volatile configuration memory. 1920M bytes of Supervisor Card system flash. (rbhome7005) *[mynode] #

Switch

2930_lab(vlan-4014)# show version

Image stamp: /ws/swbuildm/rel_ukiah_qaoff/code/build/lvm(swbuildm_rel_ukiah_qaoff_rel_ukiah) Jul 21 2017 14:09:42 WC.16.04.0008 423 Boot Image: Primary

Boot ROM Version: WC.16.01.0003 Active Boot ROM: Primary

2930_lab(vlan-4014)#

Controller Configuration

interface vlan 101 ip address 192.168.101.1 255.255.255.0

! ip dhcp excluded-address 192.168.1.20 192.168.101.1 ip dhcp pool wiredpptn dns-server 103.237.40.66 103.237.40.66 default-router 192.168.101.1 network 192.168.101.0 255.255.255.0 ! vlan 4013 wired aaa-profile 2930PPTN ! aaa profile "2930PPTN" initial-role "2930pptnuser" ! aaa authentication wired profile "2930PPTN" user-role 2930pptnuser vlan 101 access-list session global-sacl access-list session apprf-2930pptnuser-sacl access-list session ra-guard access-list session allowall access-list session v6-allowall

Controller show commands

Verify the profile information

Show AAA profile

(rbhome7005) *[mynode] #show aaa profile

AAA Profile List

Name Re	eferenc	es Profile Status
2930PPTN	2	
default 1		
default-dot1x	0	Predefined (changed)
default-dot1x-psk	0	Predefined (changed)
default-mac-auth	0	Predefined (changed)
default-open	0	Predefined (changed)
default-tunneled-use	er 0	Predefined (changed)
default-xml-api	0	Predefined (changed)
labtest 1		
NoAuthAAAProfile	e 1	Predefined (changed)

Total:10

Show AAA profile

(rbhome7005) *[mynode] #show aaa profile 2930PPTN

AAA Profile "2930PPTN"

Parameter Value Initial role 2930pptnuser MAC Authentication Profile N/A MAC Authentication Default Role guest MAC Authentication Server Group default 802.1X Authentication Profile N/A 802.1X Authentication Default Role guest 802.1X Authentication Server Group N/A Download Role from CPPM Disabled Set username from dhcp option 12 Disabled L2 Authentication Fail Through Disabled Multiple Server Accounting Disabled N/A User idle timeout Max IPv4 for wireless user 2 **RADIUS** Accounting Server Group N/A **RADIUS Roaming Accounting** Disabled **RADIUS** Interim Accounting Disabled XML API server N/A RFC 3576 server N/A User derivation rules N/A Wired to Wireless Roaming Enabled Device Type Classification Enabled Enforce DHCP Disabled PAN Firewall Integration Disabled Open SSID radius accounting Disabled (rbhome7005) *[mynode] #

Show VLAN

(rbhome7005) *[mynode] #show vlan (rbhome7005) *[mynode] # VLAN CONFIGURATION _____ VLAN Description Ports AAA Profile Option-82 ---- -----1 Default GE0/0/1 Pc0-7 N/A Disabled 2 VLAN0002 GE0/0/0 GE0/0/2 N/A Disabled 10 WAN GE0/0/3 N/A Disabled 100 VLAN0100 N/A Disabled 101 VLAN0101 Disabled N/A 4013 VLAN4013 2930PPTN Disabled

(rbhome7005) *[mynode] #

Show user role

(rbhome7005) *[mynode] #show user role 2930pptnuser This operation can take a while depending on number of users. Please be patient

Users _____ IP Age(d:h:m) Auth VPN link AP name Roaming MAC Name Role Essid/Bssid/Phy Profile Forward mode Type Host Name User Type ---------- ---- ----- ------192.168.101.2 98:4b:e1:eb:8e:08 2930pptnuser 00:00:13 tunnel 9 Wired 192.168.1.251:7/b0:5a:da:98:c4:c0 2930PPTN tunnel WIRED

The laptop has been assigned an address in VLAN101 DHCP Pool 192.168.101.2 We can see the link back to the AAA Profile 2930PPTN

Show rights

We can look at the detail of the 2930pptnuser with the show rights command

(rbhome7005) *[mynode] #show rights

RoleTable

 Name
 ACL Bandwidth
 ACL List

 Type
 --- ----

2930pptnuser 87 Up: No Limit,Dn: No Limit global-sacl/,apprf-2930pptnuser-sacl/,raguard/,allowall/,v6-allowall/ User

User Entries: 1/1 Curr/Cum Alloc:5/36 Free:0/31 Dyn:5 AllocErr:0 FreeErr:0 (rbhome7005) *[mynode] #

Further detail can be obtained by including the role name

(rbhome7005) *[mynode] #show rights 2930pptnuser

Valid = 'Yes' CleanedUp = 'No'Derived Role = '2930pptnuser' Up BW:No Limit Down BW:No Limit L2TP Pool = default-12tp-pool PPTP Pool = default-pptp-pool Number of users referencing it = 2Assigned VLAN = 101Periodic reauthentication: Disabled **DPI Classification: Enabled** Youtube education: Disabled Web Content Classification: Enabled **IP-Classification Enforcement: Enabled** ACL Number = 87/0Openflow: Enabled Max Sessions = 65535

Check CP Profile for Accounting = TRUE

Application Exception List

Name Type

Application BW-Contract List

Name Type BW Contract Id Direction

access-list List

Position Name Type Location 1 global-sacl session 2 apprf-2930pptnuser-sacl session 3 ra-guard session

4 5	allowa v6-allo	ll owall	session session					
globa	l-sacl							
Priori Black	ty Sour list Mii	rce Destina rror DisSca	ation Service an IPv4/6 Co	Application ntract	Action TimeRange	e Log Expired Q	Queue TOS	8021P
apprf-	-2930pp	tnuser-sacl	l					
Priori Black	ty Sour list Min	rce Destina rror DisSca	ation Service an IPv4/6 Co	Application ntract	Action TimeRange	e Log Expired Q	Queue TOS	8021P
 ra-gua	ard							
Priori Black	ty Sour list Mii	rce Destina rror DisSca	ation Service an IPv4/6 Co	Applica ntract	tion Action Time	Range Log Expir	ed Queue	ГОS 8021Р
1 allow	user all	any i	cmpv6 rtr-adv	der	ny	Low		6
Priori Black	ty Sour list Min	rce Destina rror DisSca	ation Service an IPv4/6 Co	Application ntract	Action TimeRange	e Log Expired Q	Queue TOS	8021P
1 2	any any	any a any a	nny nny-v6	permit permit	Low Low		4 6	
v6-all Priori Black	lowall ty Sour list Min	rce Destina rror DisSca	ation Service an IPv4/6 Co	Application ntract	Action TimeRange	e Log Expired Q	Queue TOS	8021P
 1	any	any a	 my-v6	permit	Low		6	
Expir (rbho	ed Polic me7005	vies (due to) *[mynode	time constrain e] #	ts) = 0				

Tunneled node show commands

192.168.1.251 is the IP address of the 2930 switch

show tunneled-node config

(rbhome7005) *[mynode] #show tunneled-node config

Tunneled node Server:Enabled Tunnel Loop Prevention:Disabled

(rbhome7005) *[mynode] #show tunneled-node database

Tunneled node database

IP #Tunnels

192.168.1.251 1

show tunneled-node state

(rbhome7005) *[mynode] #show tunneled-node state

Tunneled Node State

IP MAC port state vlan tunnel inactive-time 192.168.1.251 b0:5a:da:98:c4:c0 7 complete 4013 9 0 (rbhome7005) *[mynode] #

Switch config

tunneled-node-server controller-ip 192.168.2.1 exit interface 6 tunneled-node-server exit interface 7 tunneled-node-server exit interface 8 tunneled-node-server exit vlan 4013 name "TN-TRANSPORT" untagged 6-8 no ip address jumbo exit

Switch Show commands

Laptop is plugged into port 7 of my switch. The port state should come up as complete when all of the configuration is in place and the laptop is plugged in. If the port shows "in progress" there is an issue with configuration or ip reachability between the Switch and controller.

2930_lab(config)# show tunneled-node-server state

Tunneled Node Port State

Active Controller IP Address : 192.168.2.1

Port State

- 6 Port down
- 7 Complete
- 8 Port down

2930_lab(config)#

Note that laptop is plugged into port 7 of the switch

2930_lab(config)# show tunneled-node-server statistics

Tunneled Node Statistics

Port : 6 Port : 7

Control Plane Statistics

Bootstrap packets sent : 8 Bootstrap packets received : 8 Bootstrap packets invalid : 0

Tunnel Statistics

Rx Packets: 2554Tx Packets: 1827Rx 5 Minute Weighted Average Rate (Pkts/sec) : 0Tx 5 Minute Weighted Average Rate (Pkts/sec) : 0

Port:8

Aggregate Statistics

Heartbeat packets sent: 2153Heartbeat packets received: 2149Heartbeat packets invalid: 0Fragmented Packets Dropped (Rx) : 0Packets to Non-Existent Tunnel: 0MTU Violation Drop: 0

2930_lab(config)#

Appendix

Controller scree aruba ^{MOBILITY CONTR rbhome700}	oller 155		ACCESS POINTS	CLIENTS	S ALE	RTS				?	ıdmin 🛩
Mobility Controller >											(¢)
ع مر S Mobility Controller	Dashboard Configuration WLANs Roles & Policies	Gener Conr serve	al Admin AirWave nect to external license C ge	e CPSEC	Licens	i ng Ce	ertificates	SNMP	Loggin	g Profiles	ŕ
	Access Points		Usage Summary U	sage by This	Controller	Usage I	by Other Co	ontroller			
	AP Groups				AP	PEF	RF Protect	ACR	WebCC	VIA	
	Authentication				Access Points	Policy Enforcement Firewall	Wireless Intrusion Protection	Advanced Cryptography	Web Content Classification	Virtual Intranet Access	
	Services		Feature Enabled								
	Interfaces		Scope		Per-AP	Per-AP	Per-AP	Per-Session	Per-AP	Per-Session	
	System		Licenses Installed		16	16	32	32	0	0	
	Tasks		Expired Licenses		0	0	0	0	0	0	
	Diagnostics		Active Licenses			16	32	32	0	0	
	Maintenance		Licenses Used		5	5	5	0	0	0	
			Licenses Remaining Availab	ole	11	11	27	32	0	0	
		> Inve	ntory								—

Figure 5: PPTN switch uses another license

As we can see from above there are 4 APs but 5 licenses used. Each PPTN switch consumes AP licenses. 4 licenses used by APs and 1 by PPTN switch

Another Cli example

On the access switch we want to use port 6 for a printer. Port 7 + 8 are allocated for laptops

We want printers to be placed in vlan 102. This can be done by adding the following config on the controller and switch.

Configuration commands to the controller. ip access-list session apprf-tnprint-sacl ! user-role tnprint access-list session allowall access-list session v6-allowall vlan 102 1 user-role 2930pptnuser access-list session apprf-authenticated-sacl vlan 102 description TNPRINT 1 vlan 4014 wired aaa-profile 2930tnprint ١ interface vlan 102 ip address 192.168.102.1 255.255.255.0 ip dhcp excluded-address 192.168.102.1 192.168.102.20 ip dhcp pool printpptn dns-server 103.237.40.66 103.237.40.66 default-router 192.168.102.1 network 192.168.102.0 255.255.255.0 1 aaa profile "2930tnprint" initial-role "tnprint" 1 aaa authentication wired profile "2930tnprint" I

(rbhome7005) *[mynode] #show tunneled-node state

192.168.1.251 b0:5a:da:98:c4:c0 6 complete 4014 31 1 192.168.1.251 b0:5a:da:98:c4:c0 7 complete $\frac{4013}{14}$ 1 (rbhome7005) *[mynode] #show tunneled-node database Tunneled node database IP #Tunnels --------192.168.1.251 2 (rbhome7005) *[mynode] # Controller show commands (rbhome7005) *[mynode] #show user role 2930pptnuser This operation can take a while depending on number of users. Please be patient Users IP MAC Name Role Age(d:h:m) Auth VPN link AP name Roaming Essid/Bssid/Phy Profile Forward mode Type Host Name User Type ----- -----_____ _____ ---------- -----192.168.101.3 b8:27:eb:7b:87:b9 2930pptnuser 00:00:08 tunnel 14 Wired 192.168.1.251:7/b0:5a:da:98:c4:c0 2930PPTN tunnel WIRED User Entries: 1/1 Curr/Cum Alloc:6/38 Free:0/32 Dyn:6 AllocErr:0 FreeErr:0 (rbhome7005) *[mynode] #show user role tnprint This operation can take a while depending on number of users. Please be patient Users -----IP MAC Name Role Age(d:h:m) Auth VPN link AP name Roaming Essid/Bssid/Phy Profile Forward mode Type Host Name User Type ----- ---- ----- ------ ----------------_____ ----- ---- -----192.168.102.21 98:4b:e1:eb:8e:08 tnprint 00:00:14 tunnel 31 Wired 192.168.1.251:6/b0:5a:da:98:c4:c0 2930tnprint tunnel Win 7 WIRED User Entries: 1/1 Curr/Cum Alloc:6/38 Free:0/32 Dyn:6 AllocErr:0 FreeErr:0 (rbhome7005) *[mynode] #

Additional configuration commands to the switch

Tunneled node is already configured so we simple add the PPTN Vlan and bind it to the port

vlan 4014 name "TNPRINT" untagged 6 no ip address jumbo exit interface 6 untagged vlan 4014

AppRF data for tunneled node

One of the major benefits of tunneled node is Deep Packet Inspection (DPI) capabilities that are available on the controller. Here is a screenshot showing the laptop traffic connected to the tnprint vlan 102.

Dashboard	User	Destination	Application	WLAN	Device	Role			
Performance	User	rs (2)							
Usage	User		Bytes 🖘		Packets	Destination	Application	WLAN	Devi
Potential Issues	non user	r traffic		5.3 M	8.3 K	170	28	wired	Unk
Traffic Analysis	192.168.	102.21		11.3 K	258	4	2	Unknown	Win
AirGroup									
Security									
UCC									
Controller									
Figure 6: AppRF users									

User	Destination	Application	WLAN	Device	Role			
Role	s (3)							
Role	B	ytes 🔻	Packets	User	Destination	Application	WLAN	Device
unknow	n –	10.5 M	17.7 K	1	158	34	1	0
tnprint	-	11.5 K	262	1	4	2	1	1
2930ppt	nuser –	1.4 K	18	1	3	1	1	0

Figure 7: AppRF breakdown by role